

PersOnalized Smart Environments to increase Inclusion of people with DOwn’s syNdrome

Deliverable D5.4

Databases for integration of services

Call: FP7-ICT-2013-10

Objective: ICT-2013.5.3 ICT for smart and

personalised inclusion

Contractual delivery date: M6

Actual delivery date: 15.07.2016

Version: V4

Author: Lars Thomas Boye, Tellu AS

Contributors: Dean Kramer, MU

Reviewers: Silvia Rus, Fraunhofer

 Dr. Juan Carlos Augusto, MU

Dissemination level: Public

Number of pages: 53

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

2

Contents
Executive summary ... 5

1 Introduction ... 6

1.1 Deliverable content and versions .. 6

1.2 Framework infrastructure ... 6

1.3 Data security .. 8

1.4 Personalisation .. 8

2 SmartPlatform ... 9

2.1 SmartPlatform data and interface overview ... 9

2.2 Accounts and authentication .. 12

2.2.1 API access .. 12

2.2.2 Account model .. 12

2.2.3 Device ID .. 13

2.3 REST API ... 13

2.3.1 URL... 14

2.3.2 Retrieving data .. 14

2.3.3 Filtering data requests ... 15

2.3.4 Data content .. 15

2.3.5 Submitting data ... 16

2.3.6 Deleting data ... 16

2.4 Tracking and logging history .. 16

2.5 POSEIDON asset type and properties .. 19

2.5.1 API usage for user profile .. 20

3 File server API .. 23

3.1 Logging in ... 23

3.1.1 Request .. 23

3.1.2 Returns .. 23

3.1.3 Errors ... 23

3.2 Adding a resource .. 23

3.2.1 Request .. 24

3.2.2 Returns .. 24

3.2.3 Errors ... 24

3.3 Changing a resource .. 24

3.3.1 Request .. 24

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

3

3.3.2 Returns .. 25

3.3.3 Errors ... 25

3.4 Listing resources .. 25

3.4.1 Request .. 25

3.4.2 Returns .. 26

3.4.3 Errors ... 27

3.5 Fetching a resource ... 27

3.5.1 Request .. 27

3.5.2 Returns .. 27

3.5.3 Errors ... 28

3.6 Deleting a resource ... 28

3.6.1 Request .. 28

3.6.2 Returns .. 28

3.6.3 Errors ... 28

4 Route data specification .. 30

4.1 Data model .. 30

4.2 Data file specification .. 31

4.2.1 Relation to existing formats .. 32

4.2.2 meta object ... 32

4.2.3 route object ... 32

4.2.4 leg object ... 32

4.2.5 step object ... 33

5 Shopping list data .. 35

5.1 Fields of a shopping list ... 35

5.2 JSON example .. 35

5.3 Product information .. 35

5.4 Usage ... 36

6 Video list data .. 37

7 Calendar data .. 38

7.1 Architecture ... 38

7.2 Data model .. 39

7.3 Data objects ... 39

7.3.1 Calendar .. 39

7.3.2 Event .. 40

7.3.3 Reminder ... 41

7.3.4 Attendee .. 42

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

4

7.4 POSEIDON data extension ... 42

Appendix 1: SmartPlatform API resources .. 43

Alarm ... 43

Asset .. 44

Device .. 45

Group ... 46

Position .. 46

Rule .. 47

Type ... 47

Zone ... 48

Appendix 2: Route data files ... 50

Route file schema for POSEIDON mobile application ... 50

Example route JSON .. 50

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

5

Executive summary
This deliverable documents APIs and data specifications for server-side data storage in the POSEIDON

infrastructure. It is associated to Task 5.5 – Databases to support integration. This is version 4 of the

deliverable, compiled together with version 4 of the framework deliverable D5.1. The server-side

data storage has been defined as part of the framework, where it is an important aspect of the

technical infrastructure. The main documentation of the infrastructure is found in D5.1. D5.4 is a

compilation of specifications and documentation for application developers. The whole deliverable

was rewritten for version 3, with mostly new content.

Version 4 update: The end user personalisation aspect has been clarified. See section 1.4 for an

overview.

There are several key forms of data needed to be stored and shared between parts of the POSEIDON

system. The SmartPlatform service holds the POSEIDON account with preferences, and also stores

device data to be made available for monitoring. The data and access models of the SmartPlatform

are documented in this deliverable, as are the API used to access the data.

A file server providing cloud storage of instructional content is also part of the infrastructure, with

API documentation found here. Data specifications for the instructional content is part of the

framework, and specifications for route data for navigation, products and shopping lists for money

handling and a video play list are found in this deliverable.

Calendar data also needs cloud storage. The framework infrastructure includes Google’s Calendar

service for calendar event storage, but extends the event data with instruction lists and multi-media.

Calendar documentation here covers architecture, data model and data specification for this part of

the framework.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

6

1 Introduction

1.1 Deliverable content and versions
The focus of this deliverable is the data storage needed to support the various modules of the

POSEIDON system. The Description of Work calls for shared access databases which will act as

interfaces amongst different parts of the system to support interoperability. Various forms of data

needs to be stored in the system. User’s data such as a profile with preferences, data for services,

and context data for context awareness and monitoring are all important parts of the POSEIDON

solution. All client applications should have access to the same data. Secondary and tertiary users use

applications to enter personalized content and do other management tasks on the data. The same

data must then be available for primary users, for training and preparations at home and at all times

on the mobile device. Data must be connected to accounts, both to connect the right primary and

secondary user and for secure authentication.

Data repositories and access is related to the development framework task as well as to the

prototype functionality developed in the project. The nature of the data storage depends on the

architecture and technology selected for the framework. The contents of this deliverable has

changed significantly in the course of the project, based on the development of the prototype

services and framework. Its planned date of delivery was month 6 of the project, along with the

framework deliverable D5.1. First versions of the deliverables were delivered at this early stage of

the project. However, it was not feasible to define a complete framework at this early stage, and the

framework continued to evolve based on the development of the prototype system.

A second version was delivered in the second year, updated to reflect the state of the second

iteration prototype system in the phase leading up to the first pilot. It had some documentation for

SmartPlatform, considered as part of the framework from the start. And it had documentation for

calendar and route data as it was used in that prototype iteration. While the SmartPlatform

documentation were revised and extended, the other documentation was new for version 3. APIs

and data specifications have been formalised and included as part of the POSEIDON framework.

Everything in D5.4 is now considered part of the framework – it is documentation for developers to

be able to use the data storage part of the infrastructure.

This third version of D5.4 was compiled together with the finalisation of the framework and its

documentation in version 3 of D5.1. Version 4 of D5.1 and D5.4 are minor updates to better address

personalisation (see section 1.4). D5.1 describes the development framework. The system

architecture is described in chapter 4. The technical infrastructure, which includes the data stores, is

described in chapter 5. These chapters should be read to get an overview of the framework and a

conceptual understanding of the technical infrastructure. D5.4 compiles the technical specifications

of APIs and data structures, needed for developers to connect to the infrastructure. Each chapter is

based on a technical documentation for developers for one part of the infrastructure, and each of

these documents is published on the POSEIDON project web1 as part of the framework

documentation for developers. Apart from the introduction, this text will have little interest to non-

programmers, while D5.1 gives the more accessible descriptions.

1.2 Framework infrastructure
Figure 1 shows the technical architecture of the POSEIDON framework. The infrastructure is

highlighted in colour, with different colours for different infrastructure components. This deliverable

1 http://www.poseidon-project.org/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

7

is concerned with the server-side data stores along the bottom of the figure, and especially the APIs

of these data stores, as this is where client applications interact with the data stores. Such client

applications are indicated in the upper part of the figure, and the lines with arrow-heads indicate

some of the infrastructure usage done by applications. The interactive table and context middleware

components of the infrastructure are not subjects of this deliverable, as these have no server-side

API in the framework. The context awareness middleware has a server-side with data store, but this

is private to the context middleware sub-system – applications interact with the middleware of the

mobile device and not directly with the server.

Figure 1: POSEIDON framework architecture with data stores

The SmartPlatform service (blue in Figure 1) stores both user accounts with preferences and

observations such as position. It has a sensor input API for raw input of data, primarily used for

position and other device data from mobile devices. Java and Android client libraries are provided to

developers as part of the framework, handling the transactions on the most relevant platforms, so

the API itself is not documented here. More important is the REST API, where applications get access

to the SmartPlatform data. The developer documentation for POSEIDON usage of the SmartPlatform

is found in chapter 2, and includes an overview of the SmartPlatform data model and related aspects,

documentation of authentication and access and the API itself, and specification of POSEIDON-

specific account properties. Detailed API documentation is included in an appendix.

The infrastructure includes a file server (green in Figure 1), providing a shared cloud storage of

instructional material and other media. The file server API is documented in chapter 3. Data

specifications for various forms of instructional content is also part of the infrastructure. Chapter 4

contains the data model and specification for route data, used to define routes for training and real-

time navigation. Chapter 5 contains specifications for shopping list data for money handling

functionality. Chapter 6 has a specification for a play list of videos.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

8

Calendar data is stored in the Google Calendar service, but all user interaction with this data must be

through POSEIDON applications as our data model is an extension of that used by other calendar

services, including instructions and media. Access to the data is either through the Google Calendar

HTTP API, or through the calendar data provider middleware on Android devices. The calendar

architecture, data model, and data specification is documented in chapter 7.

1.3 Data security
All APIs described here use an encrypted HTTP connection (https) for transactions and require

authentication. POSEIDON accounts are defined in Tellu SmartPlatform. These accounts are used for

both SmartPlatform and file server transactions, with the file server connecting to the SmartPlatform

instance for verification. In the simplified model of the pilot system, one account provides

authentication for a secondary user and associated primary user. A user name and password must be

provided in each application of the system. In primary user applications this can be entered by a

secondary user as part of setup and thereafter remembered by the application. The account model

of the SmartPlatform allows for a hierarchy of accounts, and it is possible to create tertiary user

accounts with access to the data of multiple primary users. The account model is described in

chapter 2.2

The calendar storage uses the Google Calendar service, and therefore requires authentication with a

Google account. On Android devices this authentication is handled outside the POSEIDON system, as

it is part of the device middleware. For other applications, the secondary user must give the

application permission to access the calendar part of a Google account.

1.4 Personalisation
Personalisation is a very important aspect for the POSEIDON solution. Section 4.4 in deliverable D5.1

was added in the fourth iteration of the framework deliverables to clarify how the framework

infrastructure supports personalisation. The main mechanisms are the user profile of the account,

and the various forms of personal content. All parts of the infrastructure documented in D5.4 take

part in this personalisation.

The user profile is stored on the SmartPlatform service, as properties on the asset entity. This is

described in section 2.5. A subsection has been added to give a detailed explanation of how the

profile is retrieved using the SmartPlatform API. Much of the personal content is stored on the file

server. The API is described in chapter 3. The forms of personalised content defined by the

framework are routes for navigation (data specification in chapter 4), shopping lists (chapter 5) and

video lists (chapter 6). All of these include media, stored on the file server. Finally, calendar data is

also a form of personalised content. The architecture and data model, described in chapter 7, is

based on the Google Calendar service, but with a POSEIDON-specific extension described in section

7.4 for additional personalisation.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

9

2 SmartPlatform
This chapter reproduces the POSEIDON developer documentation for the SmartPlatform framework

component. It first describes the data flow and data and account model of the platform. It describes

the API other POSEIDON components can use to connect to this service. And it describes what data

we store in SmartPlatform in the POSEIDON prototype solution. An overview of the SmartPlatform is

given in chapter 5 of deliverable D5.1.

Tellu SmartPlatform is a generic and highly configurable platform for data collection and processing.

It is used to implement sensor-based services. The core functionalities are:

 Receival of data from a heterogeneous set of sensor devices and protocols.

 The storage of this data into an internal data model.

 Processing of this data by a rule engine.

 A web application for management and data access.

 A REST API to allow access to the data by other services.

This documentation is not a complete developer manual for the Tellu SmartPlatform, but aims to

explain what is needed for developers of external applications to be able to connect to the platform.

In addition to explaining the account and data model and the main API itself, it will explain aspects of

the system that are useful as a background.

2.1 SmartPlatform data and interface overview
Figure 2 shows an overview of the platform.

Figure 2: Tellu SmartPlatform architecture overview

There are two different interfaces to the SmartPlatform for other components in the POSEIDON

solution – Device Adapters (edges) and REST API – and it is important to understand how these differ.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

10

Roughly we can say that the first is for input of raw data in forms that are independent of

SmartPlatform, while the second gives access to SmartPlatform’s own data model, which includes

results of the input after processing. So these interfaces are at opposite ends of the system. We will

go through these aspects of the system, following the flow of data. But first a quick remark about

“devices” and “sensor” data. We use these terms because the SmartPlatform was created for

processing data from traditional sensor devices, with inputs such as position, temperature and

events registered by the devices. However, as it is a generic platform, the data input can be anything

that can be represented with numbers and text. So the “Sensor device” term should be taken in the

broadest possible sense.

The SmartPlatform can be set up with Device Adaptors (often called edges) to collect data from

sensor devices. The platform can be used with any type of data source by adding an edge that speaks

its language and translates incoming data into the platform’s internal format. In addition to receiving

data from the devices and passing it on to the core, an edge typically supports commands to the

devices, such as for configuration, so there is communication both ways. In POSEIDON we have so far

only done data collection from client applications we develop within the project, where we have

control of the communication protocol. We have a generic SmartPlatform edge where data can be

posted using HTTP POST and a JSON format. This simple protocol is easy to implement in our

components that needs to post data to the system. However, the edges give the system great

flexibility. We can easily connect small purpose-built sensor devices such as a stand-alone GPS.

Figure 3: Asset and devices

As this edge part of the system is a sensor device interface meant for data collection, it is

independent of SmartPlatform’s internal data model. The relevant concepts in the data model are

that of device, which is a source of data, and observation, which is an input to the system from a

device. Observation is still called position in some places, as initially all observations were positioned,

but in addition to some fixed fields such as timestamp and position data they can have arbitrary

fields in a key-value map. The central concept in SmartPlatform is asset, which is a tracked entity. In

POSEIDON, there is an asset representing each primary end user. An asset can have one or several

devices, and observations from these devices are then known to be about this asset. An asset may

for instance have a position, and it does not necessarily matter where the position comes from, so it

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

11

is possible to add a new device to provide position without affecting the service logic that deals with

assets and their properties.

Figure 3 shows the relationship between sensor devices and an asset. It is basically the relationship

between sources of data and the entity the data is about. The figure also indicates that assets can

belong to groups, and that an asset can be of a specific type, with the type specifying properties all

such assets have. Asset is also the main entity for POSEIDON use of the system. Using fields available

for the asset entry, such as properties and tags, we can store context, preferences and other user

data, and make it available both for the rule engine in SmartPlatform and for other modules through

the API.

Figure 4: Central SmartPlatform data model entities

Figure 4 shows the most important entities in the SmartPlatform data model, and their relationships

(references). Those not already described are mainly of interest to the platform and service itself, for

the logic which can be built using its rule engine. An alarm entity can be created by the rule engine

when some abnormality is detected. If this mechanism is used, alarm entities can be retrieved

through the API. The zone entity is for creating geofence logic in SmartPlatform, that is, trigging rules

based on entering and leaving geographical areas. This can be used to keep track of where a user is

(home/school/etc.).

The data model with entities such as assets is stored in SmartPlatform’s Storage Engine and can be

managed through its Management Console. Data from edges go through Filter and processing, where

unneeded data are discarded and the rest is connected to the data model. Every time there is a new

observation available from the initial processing, the Business Logic (rule engine) processes the

change in state, and this can cause rules to trigger, which in turn can update asset state.

The REST API gives access to the objects of SmartPlatform’s data model, both for reading and for

making changes. The asset acts as a repository of information about the user, and will hold context

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

12

such as location, user preferences, and any other types of data that needs to be shared between

POSEIDON modules. Fields can have their values updated directly from observations, from the

triggering of rules, or through the REST API. Generally, if information may need to trigger rules in

SmartPlatform’s rule engine, it should be posted as an observation through an edge, otherwise it can

be posted directly to the asset through the REST API.

The SmartPlatform also has a Subscription API, where external applications can register

subscriptions, for instance to all updates pertaining to a specific asset. The platform then maintains

an active connection to the subscribing client, rather than requiring the client to poll for data to

check for updates. The POSEIDON web application uses this to show the primary user position on a

map.

More of the entities of the data model are described in the appendix, in the context of the REST API.

2.2 Accounts and authentication
SmartPlatform has an extensive, hierarchical access control scheme, which is described in this

chapter.

2.2.1 API access
All access to the system through the REST API requires authentication as a user with the right

permissions. A user in the SmartPlatform context is someone (or an external system) with access to

the system, registered in the system with a user name and password (not to be confused with users

in the POSEIDON meaning, although a POSEIDON secondary user may have a SmartPlatform user).

Each API request must include an authentication token, supplied as an HTTP header, which is tied to

a user. A token can be acquired in a login transaction giving a user name and password. A token may

be time-limited or not. For the other modules in the POSEIDON system, it is possible to issue tokens

with no timeout to simplify their interaction with the service.

2.2.2 Account model
Figure 5 shows the main entity types relevant to this data access, where it is important to understand

the distinction between account, user and the tracked POSEIDON primary user. At the top of this

hierarchy there is a service provider, which can be the administrator of a set of accounts. A

POSEIDON service provider has been set up for the POSEIDON prototypes. All data available through

the REST API is owned by an account; this entity type is called customer internally and in APIs. Then

we have the user, which is just a data access concept as has already been discussed. A user is always

tied to a specific account, and can only access the data in this account. But an account can have many

users. A user can also have access to the higher levels of the hierarchy. It can be a service owner,

which means it can manage service providers, or it can be a service provider. A service provider user

has access to all the accounts of this service, and can change which account it is accessing through

the API.

In addition, there is a very detailed system of permissions which specify exactly which entity types,

and which operations on this data, a user has access to. These are collectively managed as roles. For

instance, an account may have one user with an administrator role, with full permissions to configure

the account, and other users with a much more restrictive role to just look at the data.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

13

Figure 5: SmartPlatform account model

The POSEIDON primary users are represented as asset entities in the data model, as has already been

mentioned. So such a tracked person is “just data” in this context, one of the data objects belonging

to an account, and there can be any number of these stored in an account. It is possible to restrict a

user’s access to specific assets in an account. All this means it is possible to use a single account for

several sets of secondary users each having access only to a specific primary user.

When using the SmartPlatform as part of the infrastructure providing a service to primary, secondary

and tertiary users, an account and role policy must be specified. A service provider responsible for

this part of the service may set up a separate account for each primary/secondary user pair, or put all

users in a single account. If correctly set up with permissions, the end users will not see any

difference. The single account model has some important advantages. It makes it easy to give access

to the data of a set of primary users, for instance to tertiary users. It also makes it possible to design

service logic for the rule engine which considers multiple users, as all rules are account-specific.

There is also more work to manage multiple accounts, as entities such as asset type and properties

are also all account-specific and must then be duplicated between accounts. For the POSEIDON

prototypes, we use a single account for all pilot users.

2.2.3 Device ID
The account and authentication scheme described so far does not concern the Device Adapter part

of the system. Each data source (sensor device) has a unique ID in SmartPlatform, and this is what

identifies observations as belonging to a specific device entity, which in turn belongs to an asset. A

client application instance which will post data through an edge needs to be registered in the

SmartPlatform instance, and it needs to know its ID so its posted data will be handled by the system.

There are two ways to handle this. One way is to use the device command system supported by

edges, where a configuration command is delivered to the device or application instance through the

protocol implemented by the edge. The other is to use the REST API, knowing the name of the asset

representing the end user, we can retrieve the device IDs for any devices registered for this user.

2.3 REST API
The SmartPlatform API is a standard HTTP REST API, supporting GET, POST, PUT and DELETE

operations. Data is exchanged in JSON2 format. This chapter gives a technical description of the

format of API requests and replies. The relevant resources (data objects) are described in the

appendix.

Note that the documentation for the API is available online at the following URL:

2 http://www.json.org/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

14

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Refer to this for the latest version, and for examples of the JSON data objects.

2.3.1 URL
The URL consists of four parts: base (server address), customer, resource and ID.

<base url>/<customer id>/<resource>/<resource id>

Retrieving only the root of the URL (without resource) will give an object describing what resources

are available.https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Property Description

providers A list of service providers the user making the request can access.

customers A list of customers the user making the request can access.

access A list of available resources with a map per resource indicating what
methods that is available and whether the client is allowed to perform
them.

features A list of suggestions to the client to enable or disable features in order to
provide a simpler interface to the user.

user An object containing the id of the user making the request.

provider An object containing the id of the service provider of the customer in the
request.

customer An object containing the id of the customer in the request (or if the
customer id was not included in the URL, the customer associated with
the user).

time The time the request was handled.

2.3.2 Retrieving data
All data requests must be done with the HTTP method GET. All requests done on resources will have

the same properties in the response.

Property Description

result A list of resources matching the data request. This will always be a list, even
if the client requests a resource with a specific id.

total The total number of resources matching the data request.

offset Marker to use to paginate the data.

max The maximum number of resources in each response.

user An object containing the id of the user making the request.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

15

provider An object containing the id of the service provider of the customer in the
request.

customer The customer used as source of data in the request.

time The time the request was handled.

2.3.3 Filtering data requests
The SmartPlatform has a powerful filtering mechanism. Filters are added as parameters in the URL.

Multiple filters can be added, but a mechanism can only be used once per property (latitude:less=59

and latitude:greater=58 is possible, but name:contains=e and name:contains=m is not). All filters

follow the same pattern.

<property name>:<filtering mechanism>=<filter value>

Filtering mechanisms Description

equals Usable on most data types.

contains Usable on string data types and some more complex types.

less Usable on number and date data types.

greater Usable on number and date data types.

Example Limit request to resources with ...

name:equals=Demo name equal to Demo.

name:contains=em Name containing the text “em”.

latitude:less=59 latitude less than 59.

longitude:greater=11 longitude greater than 11.

timestamp:greater=2013-04-18T00:00:00.0 timestamp after April 18. 2013.

timestamp:less=2013-04-20T00:00:00.0 timestamp before April 20. 2013.

2.3.4 Data content
When requesting data, not all data is included due to performance and bandwidth reasons. When

querying a list of data, only id and name is included by default. When querying a single resource, all

immediate properties are included (without any recursion). Complex objects will (usually) include an

id and name. This behaviour can be overridden by adding a parameter to the URL named select.

Select accepts a list of property names separated by the character “+”. It also has two special values,

star “*” and at “@”. The symbol “*” includes all properties and all subproperties. The symbol “@”

includes all properties but only the minimum of subproperties (id and name).

Example

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

16

select=* All properties of the resource, and all subproperties

select=@ All properties of the resource, but minimum of data
for subproperties

select=lastValidPosition+type Only lastValidPosition and type properties. Type (a
complex type) will only have id and name.

select=lastValidPosition+type.icon Only lastValidPosition and type properties. Type will
now also have icon as well as id and name.

select=type.* Only type. All properties of type will be included.

select=positionProvider.@ Only positionProvider. The immediate properties of
positionProvider is included.

2.3.5 Submitting data
Adding a resource must be done with HTTP method POST, without a resource ID in the object or in

the URL. Resource objects are wrapped in a list to allow creating more than one object in the same

request.

POST <base>/<customer id>/<resource>

Updating an object must be done with HTTP method PUT, with a resource ID in the URL. In both

cases the resource must a JSON object inside a JSON list in the request payload. See each resource

section for more information about which properties that are required and valid values. The resource

object is wrapped in a list to be consistent with creating an object. If a property is omitted then it will

not be changed on the server.

PUT <base>/<customer id>/<resource>/<resource id>

2.3.6 Deleting data
Deleting data must be done with HTTP method DELETE with a resource ID in the URL. The response if

successful is an empty GET response (with HTTP code 200).

DELETE <base>/<customer id>/<resource>/<resource id>

2.4 Tracking and logging history
This section describes the control of storage of tracked data history in the SmartPlatform service, and

how the data can be accessed. This is done through the management console, by a developer,

researcher or other personnel with an administrator account in the system.

The Devices category in the SmartPlatform account shows the last observation that has been made.

Accumulated Observation Values returns the latest value for various properties. In the Device view,

the Debugging Tools button shows a list of the latest observations, the list can be expanded when

blue ‘i’ icon is clicked.

When the Personnel item in the Content menu is clicked, the asset properties (with current values) as

well as the last observation from the associated device is shown. There is also a button for the

History function. When tracking of the person is enabled, all asset property changes are stored, and

will be available in this history view, as a table, graph or on a map, depending on the type of data.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

17

Figure 6: Device view in management console

Data is loaded for a specific timeframe. Tracking, in the sense of storing historical data, can be on or

not, and how long the data is stored is configurable. It is not needed to simply keep track of where a

person is at the current time. It is needed if a history of movement may be wanted. It also allows

using the SmartPlatform service to log events from client applications. In the POSEIDON pilots the

mobile application logged end user events to the SmartPlatform server, so that researchers could

analyse the logs after the pilots, seeing how much various functions were used. Therefore tracking of

history was enabled.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

18

Figure 7: Asset view in management console

Tracking history storage can be affected by one of the following settings:

 The service provider level specifies default and maximum history lengths for accounts

belonging to this provider. In the POSEIDON prototype this length is 90 days.

 Any account can set a history length within the service provider limit mentioned before.

Thus, we sat the history length to 90 days in the pilot account (POSEIDON Pilot).

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

19

 History is only stored when Tracked property of the individual asset (tracked person) is

enabled. However, tracking can be toggled through the management console, through a rule

or through the REST API. Tracking option can also be set to Never or Always.

All of the above are related to storage of data on the server, and should not be confused with the

tracking setting in the user preferences in the POSEIDON prototype mobile application. When this is

turned off, device tracking is not sent to the server in the first place.

2.5 POSEIDON asset type and properties
The asset representing the POSEIDON primary user in the SmartPlatform service needs to be of an

asset type defining a set of properties. These properties makes up a user profile. This is a place for

applications to store shared preferences, such as for personalisation. An asset property is also

needed for observation data to be stored in asset history.

The POSEIDON asset type is called “Primary user”. Figure 8 shows the properties defined at the time

of the second pilot, in the management console. Some of these are used by specific applications to

store their own preferences, and so not part of the framework.

Figure 8: Asset properties in POSEIDON pilots

Those properties which have an interest outside of a specific application are described in the table

below. The framework allows extending the type with more properties as needed.

Property name Description

destinations A set of destinations the primary user may want navigation assistance
traveling to. Used by the mobile application to create a new route to a

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

20

wanted destination. It is stored as a JSON list, where each element has the
properties name, lat and lon (the two last are the coordinates).

language Language preference, currently used by the web application.

phone The phone number of the carer to contact if the primary user needs
assistance.

theme The visual theme for the primary user. Currently supported are “pos” and
“posHC”, for the default POSEIDON theme and a high-contrast alternative.

webTheme Visual theme for the secondary user (used by the web).

Feedback For logging from the mobile application – feedback on the use of app
functionality.

Again For logging from the mobile application – whether the user would like to
use the functionality again.

AppLog For logging from the mobile application – application event.

AppView For logging from the mobile application – a view is shown in the app.

2.5.1 API usage for user profile
As the properties make up the user profile shared by POSEIDON applications, retrieving the asset

with properties is the most important interaction with the SmartPlatform service for POSEIDON

applications. We therefore show the details of the API calls here.

First we need to log in, to get an authentication token:

URL https://ri.smarttracker.no/web/api2/login

Method POST

Headers Content-Type: application/json

Payload example {"username":"example@poseidon.no", "password":"example123"}

This returns a JSON with a token:

{

"token": "12345678-1234-1234-1234-1234567890ab"

}

Next we retrieve account information, to get the customer ID for subsequent calls. The token must

be included as a header in this and all subsequent calls:

URL https://ri.smarttracker.no/web/api3/

Method GET

Headers X-Auth-Token: <TOKEN>

The account information has many fields, but we are interested in the customer ID:

{

 ...

"customer":{

"name": "Poseidon Pilot"

"id": 12345

...

}

 ...

}

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

21

Next we ask for assets of the customer. This is always a list, but in POSEIDON it should only be one,

which is the primary user.

URL https://ri.smarttracker.no/web/api3/<CUSTOMERID>/asset

Method GET

Headers X-Auth-Token: <TOKEN>

We need the ID of the asset from this JSON:

{

"result":[

{

"name": "Some Name"

"id": 67890

...

}

]

 ...

}

Finally we can retrieve the asset details based on the ID.

URL https://ri.smarttracker.no/web/api3/<CUSTOMERID>/asset/<ASSETID>

Method GET

Headers X-Auth-Token: <TOKEN>

In this reply, we are interested in the list of properties:

{

"result":[

{

"name": "Some Name"

"id": 67890

...

"properties":[

{

"name": "mobileStreaming"

"timestamp": "2016-04-27T07:42:28.669"

"value": "true"

"numberValue": null

"type": "value"

"valueType": "text"

"unit": null

"typePropertyIdentifier": "5dc15be4-9e1f-4366-bace-

6b5f07c4ca31"

"propertyTypeIdentifier": "f4597f3c-2d6a-43b2-872d-

36f7237867b7"

},

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

22

{

"name": "alarmOnStart"

"timestamp": "2016-04-27T07:42:07.685"

"value": "true"

"numberValue": null

"type": "value"

"valueType": "text"

"unit": null

"typePropertyIdentifier": "c0b8bc97-acd1-4fe0-b925-

0d486dd507b1"

"propertyTypeIdentifier": "da852545-7ab8-412b-abd1-

ccdce52738d0"

},

{

"name": "alarmInsistent"

"timestamp": "2016-04-27T07:43:59.31"

"value": "false"

"numberValue": null

"type": "value"

"valueType": "text"

"unit": null

"typePropertyIdentifier": "affbaae9-4d4f-4b81-a9df-

79c30092a2f8"

"propertyTypeIdentifier": "d0f5d889-c5e8-48e3-b543-

7a8ce90d22b8"

},

...

]

...

}

]

}

The example JSON only shows the first three properties – there will be many more. For reading, we

are interested in the name and value fields.

If an application allows the user to change property values, it should post the changes back to

SmartPlatform. It should do a PUT transaction with the same URL (with asset ID), with a JSON body

including the changed properties.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

23

3 File server API
This chapter gives an overview of how the file-server of the POSEIDON infrastructure works, and a

description of how to use it.

The file server may be deployed at any server, but for the POSEIDON prototypes it is deployed on the

SmartTracker research and innovation server where the POSEIDON web application is deployed. This

may change in the future. The term <BASE_URL> in the documentation will therefore be referring to

https://ri.smarttracker.no.

3.1 Logging in
To be able to use the file server the client has to authenticate with the authentication token

identifying the user in SmartTracker. This token can be received either by logging in using the

SmartTracker API directly or by logging in using the file server API.

3.1.1 Request

Method POST <BASE_URL>/files/login.php

Headers Content-Type application/json

Payload JSON-Object {
 ”username”:”<USERNAME>”,
 ”password”:”<PASSWORD>”
}

<USERNAME> and <PASSWORD> is you username and password in SmartTracker.

3.1.2 Returns
On success the request above will return a JSON-object containing the authentication token that is

used for interactions with the file server.

{

 "token": "36346d0f-6d08-423e-8059-491b1144ab6f"

}

3.1.3 Errors

CODE Error Description

402 Payment Required If authentication data is wrong

400 Bad Request If body is missing or malformed

3.2 Adding a resource
A file resource is added by posting a binary file and a category to the file server. The file will be given

an UUID, and will be stored in a category.

https://ri.smarttracker.no/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

24

3.2.1 Request

Method POST <BASE_URL>/files/resource.php

Headers Content-Type multipart/form-data

X-Auth-Token <TOKEN>

Payload type (TEXT) String value containing the category
of the resource.

file (FILE) The binary file that should be
uploaded

assetID (TEXT) (OPTIONAL) indicating which asset
the resource should be associated
with. This only applies to users that
control multiple assets.

3.2.2 Returns
If successful, the request should return a JSON object containing the UUID of the resource.

{

" success": true,

"message": "File successfully uploaded",

"resourceID": "9db2c2fe-da91-429d-bb50-63e512a93328"

}

3.2.3 Errors

Code Error Cause

400 Bad request If the authentication token is not provided

401 Unauthorized If the authentication token is not valid

400 Bad Request If type is not provided

400 Bad Request If file is not provided

500 Internal Server Error Should not happen, but still…

400 Bad Request If the user controls multiple assets and assetID is not provided

401 Unauthorized If the assetID provided is not controled by the user
authenticated.

3.3 Changing a resource
There are two things that can be changed for a resource: Either the category of the file or the binary

content of the file resource. These operations cannot be executed simultaneously. If you want to

change them both, you have to do it in two operations. If both the file content and the category are

provided in the request, only the file content will be changed.

3.3.1 Request

METHOD POST <BASE_URL>/files/resource.php

HEADERS Content-Type multipart/form-data

X-Auth-Token <TOKEN>

Payload resourceID (TEXT) The UUID of the resource that should be altered.

file (FILE) (OPTIONAL) Binary file with the new content. Type will not be
changed if file is provided.

type (TEXT) (OPTIONAL) Category of the file. Will be ignored if file is
provided.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

25

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

3.3.2 Returns
If successful the request will return a json object describing the change. Either:

{

" success": true,

"message": "New content for resource: '9db2c2fe-da91-429d-bb50-

63e512a93328'"

}

when changing the file content or when changing the category:

{

" success": true,

"message": "Type has been changed for the resource: '9db2c2fe-da91-429d-

bb50-63e512a93328'"

}

3.3.3 Errors

Code Error Cause

400 Bad request If the authentication token is
not provided

401 Unauthorized If the authentication token is
not valid

404 Not found If the no file with the provided
resourceID can be found.

500 Internal Server Error Should not happen, but still…

400 Bad Request If the user controls multiple
assets and assetID is not
provided

401 Unauthorized If the assetID provided is not
controlled by the user
authenticated.

3.4 Listing resources
Resources can be listed by category, or as a complete list of resources for an asset. The entries in the

list will contain the original name of the file resource, the UUID of the resource, the file’s mime type

and a md5 hash checksum of the file.

3.4.1 Request

METHOD GET <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters type (TEXT) (OPTIONAL) Category of the file. Will list only resources in this
category if provided.

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

26

Example: GET https://ri.smarttracker.no/files/resource.php?type=images

3.4.2 Returns
Successfull result will return a JSON array containing metadata for the requested resources.

{

"image": [

 {

"resourceID": "0408c04f-8ac9-421e-bf98-9fe595c404ef",

"name": "Trondheim.jpg",

"mime": "jpg",

"md5": "8876bc2339fd622cd99ca4bbf2651613"

},

{"resourceID": "90db5641-c74c-4a4c-b13d-

ad20623567b7", "name": "Snøkanon.jpg", "mime": "jpg",…},

{"resourceID": "b351a3be-1f22-4267-9bc7-

57cb65d427d2", "name": "Trondheim.jpg", "mime": "jpg",…}

],

"route": [

{"resourceID": "9db2c2fe-da91-429d-bb50-

63e512a93328", "name": "directions.json", "mime": "json",…},

{"resourceID": "ba19decd-ebbd-45b3-afdb-

56806db96bcb", "name": "directions.json", "mime": "json",…},

{"resourceID": "c8e12b5d-0f76-463f-9470-

50ca45d4b066", "name": "directions.json", "mime": "json",…}

],

"shoppinglist": [

{"resourceID": "150c6ccf-2ea8-4a6c-a2ea-

173002374155", "name": "shoppinglist.json", "mime": "json",…},

{"resourceID": "1dc5b4ea-7cd6-449e-ac7d-

527380063ac2", "name": "directions.json", "mime": "json",…},

{"resourceID": "1df79998-dc93-483e-8ffa-

34d739b394c6", "name": "shoppinglist.json", "mime": "json",…},

{"resourceID": "bf034f0f-8333-435a-8342-

40894c504b3c", "name": "shoppinglist.json", "mime": "json",…}

]

}

or by category (image):

[

 {

"resourceID": "0408c04f-8ac9-421e-bf98-9fe595c404ef",

https://ri.smarttracker.no/files/resource.php?type=images

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

27

" name": "Trondheim.jpg",

"mime": "jpg",

" md5": "8876bc2339fd622cd99ca4bbf2651613"

},

 {

"resourceID": "90db5641-c74c-4a4c-b13d-ad20623567b7",

"name": "Snøkanon.jpg",

"mime": "jpg",

"md5": "1358c53f9572424ba30565d8147a2937"

},

 {

"resourceID": "b351a3be-1f22-4267-9bc7-57cb65d427d2",

"name": "Trondheim.jpg",

"mime": "jpg",

" md5": "8876bc2339fd622cd99ca4bbf2651613"

}

]

3.4.3 Errors

Code Error Cause

400 Bad request If the authentication token is
not provided

401 Unauthorized If the authentication token is
not valid

500 Internal Server Error Should not happen, but still…

400 Bad Request If the user controls multiple
assets and assetID is not
provided

401 Unauthorized If the assetID provided is not
controlled by the user
authenticated.

3.5 Fetching a resource
The resource is fetched by a GET request that returns the binary file.

3.5.1 Request

METHOD GET <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters resourceID (TEXT) The UUID of the resource to be fetched

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

3.5.2 Returns
A successful result will return the file as binary data, with the file’s original name.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

28

3.5.3 Errors

Code Error Cause

400 Bad request If the authentication token is
not provided

401 Unauthorized If the authentication token is
not valid

404 Not found If the no file with the provided
resourceID can be found.

500 Internal Server Error Hopefully you won’t
experience this one. Notify
developer if you do.

400 Bad Request If the user controls multiple
assets and assetID is not
provided

401 Unauthorized If the assetID provided is not
controlled by the user
authenticated.

3.6 Deleting a resource
Deleting a resource will remove it permanently from the file server.

3.6.1 Request

METHOD DELETE <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters resourceID (TEXT) The UUID of the resource to be deleted

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

3.6.2 Returns
A successful result will return confirmation that the resource has been deleted.

{

"success": true,

" message": "The resource with id '0a542d5b-29a9-4568-b8fe-3a2b4b9a2ad3'

was successfully deleted"

}

3.6.3 Errors

Code Error Cause

400 Bad request If the authentication token is
not provided

401 Unauthorized If the authentication token is
not valid

404 Not found If the no file with the provided
resourceID can be found.

500 Internal Server Error Hopefully you won’t
experience this one. Notify
developer if you do.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

29

400 Bad Request If the user controls multiple
assets and assetID is not
provided

401 Unauthorized If the assetID provided is not
controlled by the user
authenticated.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

30

4 Route data specification
This chapter reproduces the POSEIDON specification of route data for developers. A route specifies

how to get from a start location to a destination. It needs to provide the instructions necessary to

guide the person with Down’s syndrome, and these typically need to be personalised by a carer.

Route data can be used to present the route, in rehearsing the trip, and in real-time navigation

guidance and tracking. The route data is stored as structured data in a JSON file, plus associated

media files for the instructions. In the POSEIDON prototype system, these files are stored on the

POSEIDON file server and accessed by all the applications (stationary, web and mobile).

4.1 Data model
As a basis for the route data, we have a generic conceptual data model, to capture the essence of

what is produced by typical route planners and needed for route presentation and navigation. This

model is based on route data formats of major route planning services, specifically OpenTripPlanner3

and Google Directions4. The routes produced by these two systems are similar on the conceptual

level, although they differ in some details. Adopting a similar model is done both because it is a

proven approach, and because it facilitates interoperability, making it possible to use the same

navigation algorithms etc. for personalised

POSEIDON routes and routes from the route

planning services. It is a hierarchical model, shown in

Figure 9.

The top-level element of our model is trip, which is a

header or abstract definition for route data, as

opposed to the route itself. It can represent meta-

data for a planned route, or input parameters for

route planning. As a minimum, it specifies a

destination point, so that it can be used to get a

route from wherever the person is currently located

from an automated route planning service. It can

also specify a start point, a time for the start or

destination, preferred transport modes, and other

parameters for route planning. A list of preferred

routes or destinations for the user to choose from is

a list of trip elements. For rehearsal or navigation, a

route for the trip is necessary. There can be several

routes for a trip in some cases – a route planning service may provide several alternative routes, and

they can be processed until one is chosen for navigation.

The route element represents an actual route – the way from a starting point to a destination. The

route element itself is mainly a container for a set of legs, though it can also have some overall

statistics. The route is made up of legs, which is a way to partition the route into main parts, for

instance for different modes of transport. Each leg specifies a transport mode, such as walking or

bus, so a route should be partitioned into multiple legs if there are multiple transport modes

involved. The main distinction in transport modes is between active and passive modes. Active

modes define places where the traveller needs to actively navigate. For our prototypes we have

considered just walking, but cycling and driving are other active modes. Passive modes refer to

3 http://www.opentripplanner.org/
4 https://developers.google.com/maps/documentation/directions/

Figure 9: Route data model

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

31

places where the traveller is a passenger (i.e. the public transport modes). The ways to provide

navigation and actions for deviation detection are different between active and passive modes.

A leg can further be partitioned into steps. Active mode legs need step information for giving step-

by-step instructions. The step is the unit of instruction, specifying a location for where to give the

instruction. Therefore, a step is typically located where there is a change of direction, a need to cross

the street, etc. Given the limitations in accuracy of satellite positioning, there should be a lower limit

on how close together steps can be placed. Steps placed just a few meters apart will not work well in

navigation, as the satellite positioning is likely to place the user at the wrong step. We recommend a

minimum distance of 50 meters. For transit legs, steps can be used to define the intermediary stops

on the transit route (i.e. telling the user how many stops are left before the destination), and/or give

a notification before reaching the destination. The instruction can include a text string, an image for

the step (i.e. show a photo of the road to the user) and sound (for voice recording).

While the step locations make up a route to follow, the route data may also specify a path. The path

is a list of geographical coordinates, typically based on map data and more detailed than the

start/end coordinates of steps and legs. Google Directions and OpenTripPlanner include a path in

their output for drawing the route on a map, and this will be as detailed as the underlying map data,

typically following every bend in the road. As we do not require use of automated route planners,

our model does not require a path, but it is included in the conceptual model, and path segments can

be provided on either the leg or step level.

Our route data model is meant to be quite flexible, so that routes can be more or less well-defined,

they can have time schedules or not, etc. A route defined by a carer will typically have more

instruction properties but less formal data such as timing and statistics, and we want applications to

be able to use both. Navigation algorithms should make a best effort to guide the user with what

data is available.

4.2 Data file specification
For storing and exchanging routes between applications, we define a JSON format with required and

optional fields. The main objects are:

{

meta:{…},

routes:[

legs:[

 steps:[…]

]

]

}

The fields of each object are described here. See Appendix 2 for an example JSON file.

Media for instructions (image and sound) can be specified for each step. These are specified with

URIs pointing at the resources (image and sound files). Resources stored on the POSEIDON file server

are identified by a resource ID. For resources stored on this server, a resource ID can be given instead

of a full URI, so that the file server address can be changed without affecting the route.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

32

4.2.1 Relation to existing formats
This format is based on that used by output from Google Directions (GD). It has the same structure of

routes containing legs containing steps. Our specification for these elements is a subset of that used

by GD. In addition we have custom fields for multimedia instructions.

A summary of the main differences from GD data:

 We have a meta object in addition to routes, corresponding to the trip level of our

conceptual model.

 GD data may have two levels of steps (a list of steps inside a step), while our specification is

for one level only (use legs for a high-level partitioning).

 We add step properties for text, image and sound instructions.

Our conceptual model is closer to the output of OpenTripPlanner than it is to GD. Our distinction

between leg and step is the same as in OTP, and OTP specifies transport mode on legs and only has

one level of steps. An application parsing routes in our and/or the GD format can therefore also be

adapted to parse OpenTripPlanner routes with little effort.

4.2.2 meta object
The meta object corresponds to the trip level of the conceptual model, and gives information about

the route without being part of the route. The required properties have been selected so that

applications only need to parse the meta object, not the route itself, to be able to present a short

summary of the route.

JSON identifier Datatype Required Comments

title string Yes Name for presenting the route in user
interfaces.

start_location string Yes Name of starting point, to tell the user where
they need to start from.

end_location string Yes Name of destination, to tell the user where the
route goes.

start_longitude double Yes Coordinate of starting point.
start_latitude double Yes Coordinate of starting point.
end_longitude double Yes Coordinate of destination.
end_latitude double Yes Coordinate of destination.
resource string No URI or resource ID for image representing the

route.

4.2.3 route object
The JSON file has an array of route objects at the top level, supporting alternative routes as Google

Direction does, although we only use single routes in the prototypes. The POSEIDON format only

requires an array of leg objects at this level.

4.2.4 leg object
As with the leg level of the conceptual model, each leg object represents a part of the route. Note

that, to be compatible with Google Directions, the travel mode is placed in each step. No fields are

required, but a meaningful definition of a leg needs either a set of steps or a start location, as a

minimum.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

33

JSON identifier Datatype Required Comments

distance object No This object is not required, but if included must
have a field value with the distance to travel, in
meters.

duration object No This object is not required, but if included must
have a field value with the planned time
duration of the leg, in seconds.

start_address string No Street address at start of leg.

end_address string No Street address at end of leg.

start_location object No Coordinates of starting point. This is an object
with two properties – lat and lng – each a
floating-point coordinate value.

end_location object No Coordinates of destination. Same type of
object as start_location.

steps array No List of step objects.

4.2.5 step object
As with the step level of the conceptual model, each step object represents an instruction and the

part of the route it applies to. While none of the instruction properties are required, at least one of

them should be given for the step to be useful.

JSON identifier Datatype Required Comments

distance object No This object is not required, but if
included must have a field value with
the distance to travel, in meters.

duration object No This object is not required, but if
included must have a field value with
the planned time duration of the step,
in seconds.

travel_mode string Yes The prototype system uses the values
WALKING and TRANSIT, distinguishing
between a mode where the user is
actively navigating and a mode where
he is a passenger.

start_location object Yes Coordinates of step point – the point
the instruction pertains to. This is an
object with two properties – lat and lng
– each a floating-point coordinate
value.

customFilePath string No URI or resource ID for image for the
instruction.

customTextInstructions string No Instruction text.

customAudioPath string No URI or resource ID for sound for the
instruction.

html_instructions string No Instructions provided by Google
Directions, included in the specification
for compatibility. Note that it may
include html tags.

polyline object No If included, this object must have a
property points, which is an encoded

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

34

polyline bean for the path (Google
Directions provides this).

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

35

5 Shopping list data
The POSEIDON framework includes support for aid and training in the usage of money, more

specifically buying items and paying the correct amount. For the data storage part, we specify data

formats for storing a set of products as well as shopping lists created from these products. These are

stored as JSON files on the POSEIDON file server.

5.1 Fields of a shopping list
Field Datatype Comments

listName text List name

list array List of shopping products

assetID string ID of SmartPlatform asset (primary user).

cost number The total money packed for this shopping
list. The amount must be greater than the
sum of products price.

List[#].price number Price of the product

List[#].name string Name of the product

List[#].resourceID string resourceID of the image, such that you can
retrieve the image with the resourceID and
assetID from the file server.

List[#].height number Original image file height

List[#].width number Original image file width

5.2 JSON example
JSON example for the shopping list data (list.txt):

{

assetID:”85190”,

ListName:”shopping list one”,

cost:”25”,

list:[

{

name:”apple”,

price:”12.2”,

resourceID:”2f41dc1c-face-4822-b863-ca66a3d3adff”,
width:”222”,

height:”222”

},

{

name:”orange”,

price:”10.2”,

resourceID:”2341dc1c-faee-4822-b863-ca66a3dwefff”,
width:”222”,

height:”222”

}

]

}

5.3 Product information
The product list data has the following fields:

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

36

Field Format Comments

assetID text ID of SmartPlatform asset (primary user).

products array List of products

products[#].price number Price of the product

products[#].name string Product name

products[#].resourceID string resourceID of the image, such that you
can retrieve the image with the
resourceID and assetID from the file
server.

products[#].height number Original image file height

products[#].width number Original image file width

5.4 Usage
In the prototype POSEIDON system, each primary user can have one set of products and one

shopping list. The products are stored as a file “products.txt”, in file category “products”. The

shopping list is stored as a file “list.txt”, in file category “list”. The system can be extended to allow

multiple lists in the same category. The product list is only used by applications which create the

shopping list (this is done in the web application for carers in the prototype system). The shopping

list is also used by applications which provide training or aid, and contains all the information

necessary to provide this functionality.

Shopping lists (files in category “list”) are retrieved with the following URL in the prototype system:

https://ri.smarttracker.no/files/resource.php?type=list

Updating the list should be done by posting a new list to the same resourceID, to avoid getting

multiple list files on the server.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

37

6 Video list data
The framework specifies that secondary users and other carers can define a list of instructional

videos. Primary user applications can have video playback available, letting the user select from this

list. The videos themselves can be stored either on the file server or on an external service such as

YouTube. The play list is defined by a JSON file, in the following format:

{

assetID:<ID of SmartPlatform asset>,

videos:[

 {

 type:<”fileServer” or ”youtube”>,

 resourceID:<resourceID if type fileServer>,

url:<URL for YouTube>

 }

]

}

Each element in the list is a video. Two types of videos are supported so far. Type “fileServer” means

the video is stored as a file on the POSEIDON file server, and a resourceID is given. Such videos

should be downloaded to the client device to play. Type “youtube” means the video is available for

streaming from the YouTube service.

The play list definition is stored on the POSEIDON file server, in the category “videoList”. So it is

retrieved with the following URL in the prototype system:

https://ri.smarttracker.no/files/resource.php?type=videoList

https://ri.smarttracker.no/files/resource.php?type=videoList

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

38

7 Calendar data
This chapter has the data specification and other developer information for calendar data in the

POSEIDON framework. The architecture and conceptual model is described in D5.1 Development

framework, chapter 5.3, as part of the technology infrastructure description. A summary of the

architecture is given in the next section.

7.1 Architecture
Figure 10 illustrates the architecture. It shows that calendar events with instructions are defined in

the Google Calendar system, while media referenced from event definitions are stored on the

POSEIDON file server. An application, for instance a web application, gets events through the Google

Calendar HTTP API5. It will then get media files referenced in the events from the POSEIDON file

server, documented in chapter 3 of this document. When creating a new event, an application will

first upload any media files to the file server, enter the returned resource IDs into the event

definition, and post that to Google Calendar.

Figure 10: POSEIDON infrastructure for calendar events with instructional media.

On an Android device, applications can use the Calendar Data Provider API6 of the Android system to

interact with the calendar storage. This Android middleware provides an API which is not tied to a

specific calendar service, and its implementation handles synchronization of calendar data between

cloud stores and the device, simplifying the job of the application programmer. Media files are

accessed through the file server API as for other applications.

Here we describe the relevant parts of the Google Calendar and Android Calendar Provider APIs, and

the POSEIDON-specific data added. See the referenced online API documentation for specifications

and examples of the APIs.

5 https://developers.google.com/google-apps/calendar/
6 http://developer.android.com/guide/topics/providers/calendar-provider.html

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

39

7.2 Data model
A consequence of the POSEIDON architecture is that the framework supports two different

programming interfaces for accessing calendar data. The general principles of the underlying data

models of the Google Calendar and Android Calendar Provider are roughly the same, and also similar

to that of iCalendar7. The main entity is the event. The calendar data models are more complex than

it may seem at first glance, as an event can be recurring, and there can be exceptions to the

recurrence. POSEIDON uses the basic features of events with reminders. This document goes through

the relevant entities, as they appear in the data of the two APIs, and how we use them.

Through the Google Calendar API, data is exchanged in a JSON structure, for instance with an event

element containing reminder elements. The Android Data Provider API is basically a database

interface, making queries and updates to tables. Figure 11 shows the database schema exposed

through this API. It serves as an illustration for the following presentation of data objects.

Figure 11: Android Calendar Provider data model.

7.3 Data objects
These are the data objects available through the APIs. We list them with JSON property names for

the Google Calendar API and Java constants for the Android calendar provider API.

7.3.1 Calendar
A calendar in this data model is an entity which events belong to – all events belongs to a calendar. A

Google account can have any number of calendars. It can also be linked with calendars of other

Google accounts. In the Android Calendar Provider API, a device may have multiple accounts with

calendar data, and each account may have multiple calendars. Accounts may be of different types,

7 iCalendar is the closest thing to a standard for exchange of calendar data, see
http://en.wikipedia.org/wiki/ICalendar

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

40

one of which is Google. So the situation can get quite complex. For the prototype system, each user

is restricted to a Google account with a single calendar. The Android device is set up with this Google

account, and no other calendar accounts. This is to ensure there is no ambiguity as to where the data

is stored, and that the same data is available on the web and on the phone.

7.3.2 Event
The event is the key entity in both the Google and Android calendar data models. The complicating

factor is that an event may either be for a single occurrence on a specific date, or it may be recurring,

which means that it represents a potentially open-ended amount of occurrences based on some

pattern. Being able to represent recurring events is very useful, as it would be very tedious to have to

enter the same event every week manually. Therefore we support recurring events in POSEIDON.

An event may also be an “all day” event. This means it doesn’t have specific start and end times, but

rather cover one or more whole days. In order to keep the primary user interfaces simple, listing

events sorted on time, we do not support “all day” events in POSEIDON. For the same reason, we

don’t want events spanning multiple dates.

The Android calendar API has an instance entity in addition to event. We can query for instances in a

given timeframe, and this will retrieve one instance for each occurrence of an event in this

timeframe. So the API handles creating instances with specific start and end times for the repeating

events. However, it is not possible to insert, update or delete instances, as they are derived from

events.

The following table lists the relevant fields for event data, with corresponding Google Calendar JSON

names and constants of the Android calendar API. For the Android API, we read data as instances,

but insert, update and delete as events.

Google Calendar API Android Calendar API Description

 Events.CALENDAR_ID
Instances.CALENDAR_ID

Identifier for the calendar the event
belongs to.

id Event._ID
Instances.EVENT_ID

For the Android API, a database ID is
used to refer to a specific event (needed
to update or delete an event).

summary Events.TITLE
Instances.TITLE

Name of the event.

start.dateTime Events.DTSTART
Instances.BEGIN

Datetime for the start of an
event/instance.

end.dateTime Events.DTEND
Instances.END

Datetime for the end of an
event/instance. A recurring event does
not specify this in the Android API.

start.date
end.date

Events.ALL_DAY
Instances.ALL_DAY

An “all day” event specifies start/end as
date without time in the Google data. In
the Android model there is an allday
flag. We do not currently support this in
the POSEIDON system.

 Events.DURATION A recurring event specifies duration for
each instance, rather than an end time,
in the Android API.

description Events.DESCRIPTION
Instances. DESCRIPTION

This field is meant for a text description
of the event. As the POSEIDON
framework require a number of

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

41

additional fields, we instead use the
description of the Google and Android
data as the place to hold POSEIDON-
specific data. This is a data structure in
JSON format, described in section 7.4.

recurrence[] Events.RDATE A recurring event can specify recurring
events with this field.

Events.RRULE A recurring event can specify rules for
recurrence with this field.

location Instances.EVENT_LOCATION
Events.EVENT_LOCATION

Location of the event. The POSEIDON
system uses this to connect an event to
a route or destination for travel. Details
given below.

start.timeZone
end.timeZone

Events.EVENT_TIMEZONE A time zone is specified when creating
an event in the Android API. Google data
has separate timeZone values for start
and end times.

An event can be connected to a location or planned route stored on the POSEIDON file server. Each

location configured for the user has a name. If navigation is added to an event, the location or route

name is stored in the location field of the event. An event with location is interpreted as the planned

time to start travelling to this location. A calendar application capable of starting navigation

functionality should look for the location in the list of configured locations or routes of the user, and

invoke navigation if a route is found.

7.3.3 Reminder
An event can have one or more reminder objects. This object specifies that the user should be

notified of an upcoming event a specific number of minutes before event start. Calendar applications

for the primary user must notify the user at the specified time.

The reminder entity is very simple, without any own message. Google Calendar can include default

reminders which are applied to all events, unless the event data explicitly specifies not to use

defaults. The default reminders are configured in Google Calendar, independently of POSEIDON. If

used, such reminders will show up in the Android data.

In the Google Calendar API, reminders are included in the data structure for an event. Any number of

event-specific reminders can be added to an array in this data. In the Android API, the reminder is a

separate entity. Each reminder entity has a reference to the event it belongs to.

Google Calendar API Android Calendar API Description

 Reminders.EVENT_ID For the Android API, a reminder entity is
retrieved with a reference to the event it
belongs to.

useDefault Google Calendar has a configuration for
default reminders, applied to all events
unless this flag is false.

overrides[].method Reminders.METHOD Google Calendar supports several
reminder methods. Email and SMS
methods are supported in both APIs, and
handled by Google. We do not
recommend using these reminder types

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

42

for our user group. The type “popup” in
the Google data, corresponding to
Reminders.METHOD_ALERT in Android, is
the type to handle with notifications in
an application.

overrides[].minutes Reminders.MINUTES Number of minutes before event start.

7.3.4 Attendee
For completeness we also include the attendee object. It represents a person or other entity which

should be present at an event, mainly identified via email address. The POSEIDON framework does

not make any special use of this object. It is useful for adding a social aspect to the calendar,

specifying people to meet.

7.4 POSEIDON data extension
The POSEIDON framework adds additional data to events, in the form of event media and a list of

instructions. To fit this into the data model of the Google and Android calendars, we put this data in

the event’s description field. It is stored as a JSON structure, with the following possible content:

{

description:<event description>,

eventIcon:<resourceID or URL>,

eventVideo:<resourceID or URL>,

instructions:[

 {

 index:<place in sequence>,

 title:<instruction text>,

 image:<resourceID or URL>,

audio:<resourceID or URL>,

video:<resourceID or URL>

 }

]

}

An event can have a list of instructions, where each should have at least one of title, image, audio or

video. These are shown to the user in sequence. All media can be specified either as a URL to any

online resource, or just as a resource ID for a file on the POSEIDON file server. Each element is also

described in the table below.

JSON identifier Datatype Description

description string A text description for the event.

eventIcon string An image to represent the event, specified by URL or
resource ID.

eventVideo string A video, as an audio-visual alternative to the description
(URL or resource ID).

index integer Each instruction can explicitly specify its place in the
sequence of instructions (low to high number), otherwise
the sequence is given by the order in the JSON array.

title string Text of the instruction.

image string Image of the instruction; URL or resource ID.

audio string Audio of the instruction; URL or resource ID.

video string Video of the instruction; URL or resource ID.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

43

Appendix 1: SmartPlatform API resources
We include here a documentation of the most important resources (data objects) of the data model

and REST API of Tellu SmartPlatform. The resource sections are ordered alphabetically, and list all

fields available through the API. The complete REST API documentation is available online, and

should be consulted for application development, as it gives a complete and up-to-date listing. It is

available at the following URL:

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Alarm
An alarm is a notification that requires the attention of a user, usually generated by the reasoning

engine based on some rule.

Property Type Optional More info Filtering

name string - -

owner customer - -

dateCreated date - equals,
greater, less

lastUpdated date -

comment string - equals,
contains

ackNeeded boolean - equals

logLevel integer - Degree of severity of alarm. 0 is most
severe, -20 least. -20 should be without
immediate notification.

equals,
greater, less

asset asset - Asset associated with the alarm. equals (id
of asset)

ackedBy user -

rule rule -

alarmCenter customer -

trigger position - The observation triggering the
rule/alarm, if available.

position position - The position of the related asset when
the alarm was created.

zone zone - Zone relevant to the triggering of this
alarm.

-

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/rule
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

44

Asset
An asset represents a person tracked by the system (the primary user). The properties and tags fields

are the most important to the other modules in POSEIDON, as these are where the user data and

state is stored.

Property Type Optional More info Filtering

name string NO equals,
contains

description string YES equals,
contains

owner customer - -

lastValidPosition position - The most recent observation with
a valid position received by the
position provider of the asset.

-

lastPosition position - The most recent observation
received by the position provider
of the asset. If the position is
valid this will be the same as
lastValidPosition.

-

tags list of
objects

YES When creating or updating only
the name of the tag will be used,
the time will be set by the server.

contains

groups list ofgroup YES When creating or updating only
the id of the group will be used.

-

insideZones list ofzone - contains (id of
zone)

icon string - This icon is the icon set by the
asset's type.

-

image string - -

type type YES When creating or updating only
the id of the type will be used.

equals (id of
type)

tracked boolean YES If enabled all observations
received by the position provider
will be stored. Cannot be set to
true if the trackMode is "never",
cannot be set to false if the
trackMode is "always".

-

trackMode string YES "always" will always store
observations received. Rules

-

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/group
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/type

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

45

Property Type Optional More info Filtering

cannot change whether or not
the asset is tracked.
"never" will never store
observations received
permanently. Rules cannot
change whether or not the asset
is tracked.
"manual" depend on the tracked
property to determine if
observations are stored. Rules
can change whether or not the
asset is tracked.

properties list of
objects

YES The possible property names are
based on the configured
properties in the asset's type.

contains

alarms list ofalarm - The five most recent,
unacknowledged alarms. Useful
for creating lightweight clients.

-

deviceCommand
s

list of
objects

- TODO -

positionProvider tag ordevice YES When creating or updating only
the id of the object will be used.
The server will first attempt to
find a device matching the id and
if not found a tag.

equals (id of
positionProvid
er)

Device
A device specifies a source of sensor data, and is assigned to an asset to provide sensor data for that

asset. In POSEIDON the app running on the user’s tablet will be one such “device”, and any other

client sub-system posting data through an edge will also have a device entry.

Property Type Optional More info Filtering

name string NO

description string YES

owner customer -

lastValidPosition position -

lastPosition position -

sensorDeviceType string NO

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/alarm
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/tag
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/device

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

46

Property Type Optional More info Filtering

active boolean -

uuid string -

primaryProperties object NO

commandProperties object -

additionalProperties object YES

filters list of
filter

YES

Group
Assets can belong to groups, which may be useful for group logic (trigger rules for all assets in a

group).

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the
same as any existing group inside the
customer.

equals,
contains

description string YES equals,
contains

owner customer -

assets list
of assets

YES

Position
Although called position, this is more generally a sensor observation. The properties field can contain

whatever key-value pairs the source wants to post.

Property Type Optional More info Filtering

asset asset - equals

valid boolean - equals

latitude double - equals,
greater, less

longitude double - equals,
greater, less

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

47

Property Type Optional More info Filtering

accuracy integer - Estimated accuracy in meters equals,
greater, less

speed integer - Speed as reported by device in meter
per second.

equals,
greater, less

address string -

timestamp date equals,
greater, less

properties object -

events list of
string

 -

insideZones list
ofzone

- A list of zones the position was inside
when it was received by the system.

contains (id
of zone)

Rule
A rule is a configurable unit of logic for the reasoning engine. The active set of rules defines the

service behaviour. The data available through the API is mainly for viewing and changing rule states

(turn on and off).

Property Type Optional More info Filtering

name string - equals,
contains

description string - equals,
contains

owner customer - -

status string YES Values: "active", "inactive", "unknown",
"stopped", "failed",
"requiresConfiguration". When changing
the status, only "active" or "inactive" are
valid inputs.

-

Type
Assets can be typed, with the type specifying what properties an asset has. POSEIDON assets will

have their own type, specifying the fields needed for our system.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

48

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the same
as any existing type inside the customer.

equals,
contains

description string YES Any string.

owner customer -

icon string YES URL referring to an icon describing assets
of this type.

properties object YES Object where each key is a different
property name. Property value is an object
with at least two entries, type and
valueType. If the type is a list it must also
include a list of string called items.

Zone
Zones are used to define location-specific logic such as geofence (trigger a rule on entering or leaving

an area).

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the
same as any existing zone inside the
customer.

equals,
contains

description string YES equals,
contains

owner customer -

position latlon - An object with two entries, latitude and
longitude.

singleLevel boolean YES When checking if an asset is inside, do
they need to be on the same floor.

floor integer YES

textual string YES

address string YES

points list of
latlon

NO List of objects with two entries, latitude
and longitude. Must have at least 3
objects.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

49

Property Type Optional More info Filtering

assets list
ofassets

- A list of assets that have received an
observation with a valid position after
this zone was created.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

50

Appendix 2: Route data files
This appendix lists a formal definition and an example of route data.

Route file schema for POSEIDON mobile application
The prototype mobile application uses a formal definition to do validation and parsing of route files.

This definition is in a proprietary XML format, which is not JSON-specific, but it is included here as it

is a formal definition in a straightforward form.

<group name="root">

 <group name="meta" cardinality="1">

 <item name="title" type="string" cardinality="1"/>

 <item name="start_location" type="string" cardinality="1"/>

 <item name="end_location" type="string" cardinality="1"/>

 <item name="start_longitude" type="double" cardinality="1"/>

 <item name="start_latitude" type="double" cardinality="1"/>

 <item name="end_longitude" type="double" cardinality="1"/>

 <item name="end_latitude" type="double" cardinality="1"/>

 <item name="resource" type="string" cardinality="0-1"/>

 </group>

 <group name="routes" cardinality="1-n">

 <group name="legs" cardinality="1-n">

 <group name="distance" cardinality="0-1">

 <item name="value" type="integer" cardinality="1"/>

 </group>

 <group name="duration" cardinality="0-1">

 <item name="value" type="integer" cardinality="1"/>

 </group>

 <item name="start_address" type="string" cardinality="0-1"/>

 <item name="end_address" type="string" cardinality="0-1"/>

 <group name="start_location" cardinality="0-1">

 <item name="lat" type="double" cardinality="1"/>

 <item name="lng" type="double" cardinality="1"/>

 </group>

 <group name="end_location" cardinality="0-1">

 <item name="lat" type="double" cardinality="1"/>

 <item name="lng" type="double" cardinality="1"/>

 </group>

 <group name="steps" cardinality="0-n">

 <group name="distance" cardinality="0-1">

 <item name="value" type="integer" cardinality="1"/>

 </group>

 <group name="duration" cardinality="0-1">

 <item name="value" type="integer" cardinality="1"/>

 </group>

 <item name="travel_mode" type="string" cardinality="1"/>

 <group name="start_location" cardinality="1">

 <item name="lat" type="double" cardinality="1"/>

 <item name="lng" type="double" cardinality="1"/>

 </group>

 <item name="customFilePath" type="string" cardinality="0-1"/>

 <item name="customTextInstructions" type="string" cardinality="0-1"/>

 <item name="customAudioPath" type="string" cardinality="0-1"/>

 <item name="html_instructions" type="string" cardinality="0-1"/>

 <group name="polyline" cardinality="0-1">

 <item name="points" type="string" cardinality="1"/>

 </group>

 </group>

 </group>

 </group>

</group>

Example route JSON
The following is an example of a JSON route according to POSEIDON specification.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

51

{

 "meta":{

 "title":"Test route",

 "start_location":"Karde",

 "end_location":"Problemveien",

 "start_longitude":10.7163861111111,

 "start_latitude":59.9438666666667,

 "end_longitude":10.72225,

 "end_latitude":59.9430305555556,

 "resource":"9fbe5760-90be-4f4e-b886-8d24a35b11f6"

 },

 "routes":[

 {

 "legs":[

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "end_address":"Problemveien",

 "end_location":{

 "lat":"59.9430305555556",

 "lng":"10.72225"

 },

 "start_address":"Karde",

 "start_location":{

 "lat":"59.9438666666667",

 "lng":"10.7163861111111"

 },

 "steps":[

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "travel_mode":"WALKING",

 "start_location":{

 "lat":"59.9438666666667",

 "lng":"10.7163861111111"

 },

 "end_location":{

 "lat":"59.9438666666667",

 "lng":"10.7163861111111"

 },

 "customFilePath":"c3f0ec11-c98e-4e1a-9726-c52fa7ca00d9",

 "customTextInstructions":" ",

 "customAudioPath":" "

 },

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "travel_mode":"WALKING",

 "start_location":{

 "lat":"59.9431138888889",

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

52

 "lng":"10.71595"

 },

 "end_location":{

 "lat":"59.9431138888889",

 "lng":"10.71595"

 },

 "customFilePath":"30804632-005b-4d4b-9042-6f908c2017e8",

 "customTextInstructions":" ",

 "customAudioPath":" ",

 "polyline":{

 "points":"mszlJ{}k`AXT@UMGOIDg@PqB\\yA"

 }

 },

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "travel_mode":"WALKING",

 "start_location":{

 "lat":"59.9428361111111",

 "lng":"10.717275"

 },

 "end_location":{

 "lat":"59.9428361111111",

 "lng":"10.717275"

 },

 "customFilePath":"69ff0f32-511c-4b05-b9e3-7cb640d86445",

 "customTextInstructions":" ",

 "customAudioPath":" ",

 "polyline":{

 "points":"yqzlJafl`ABOLRFMz@uCp@}BL{@DiB@q@TkAPu@"

 }

 },

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "travel_mode":"WALKING",

 "start_location":{

 "lat":"59.9418722222222",

 "lng":"10.7204722222222"

 },

 "end_location":{

 "lat":"59.9418722222222",

 "lng":"10.7204722222222"

 },

 "customFilePath":"f03c983f-c186-42d9-b7df-19dbe48fd2a3",

 "customTextInstructions":" ",

 "customAudioPath":" ",

 "polyline":{

 "points":"skzlJyyl`AHm@@OKH[@UKa@w@sBuD_@q@"

 }

 },

 {

 "distance":{

 "text":"0,5 km",

 "value":"488"

 },

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

53

 "duration":{

 "text":"6 min",

 "value":"324"

 },

 "travel_mode":"WALKING",

 "start_location":{

 "lat":"59.9430305555556",

 "lng":"10.72225"

 },

 "end_location":{

 "lat":"59.9430305555556",

 "lng":"10.72225"

 },

 "customFilePath":"9fbe5760-90be-4f4e-b886-8d24a35b11f6",

 "customTextInstructions":" ",

 "customAudioPath":" ",

 "polyline":{

 "points":"{rzlJ_em`A"

 }

 }

]

 }

]

 }

]

}

