

PersOnalized Smart Environments to increase Inclusion of people with DOwn’s syNdrome

New Report R4

Developers Guide

Call: FP7-ICT-2013-10

Objective: ICT-2013.5.3 ICT for smart
 and personalised inclusion

Delivery date: February 2017

Author(s): The developers of POSEIDON
 Lars Thomas Boye, Tellu
 Juan Augusto, Middlesex Univ
 Dean Kramer, Middlesex Univ
 Unai Alegre, Middlesex Univ
 Silvia Rus, Fraunhofer IDG
 Andreas Braun, Fraunhofer IDG

Dissemination level: Open

Number of pages: 42

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 2

Content
1. Introduction ... 3

2. Understanding the POSEIDON development Framework ... 5

3. Getting started - Mobile application tutorial .. 10

4. Tutorial for context-aware systems .. 21

5. Technology use of persons with DS... 27

6. Ethical and privacy concerns ... 31

7. User interface guidelines ... 33

8. Lessons learned ... 42

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 3

1. Introduction
This document is the printable and pocketable version of the POSEIDON Developer Guide.

What is this about?
We share our experiences and tools gathered during the POSEIDON project with anyone who would

like to develop an App for persons with Down’s syndrome.

At this point we strongly recommend to consult our case-study “Developing using the POSEIDON

framework by example of a Healthy Eating App”1. This document illustrates how we used the

POSEIDON framework in order to develop a healthy eating app.

Why is it interesting for me?
Here we refer to useful documents and provide a step-by-step guide on how to get started.

What does the Developer Platform offer to me?
We offer requirement gathering methodologies, information about the user group, ethical and

privacy checklist, a basic app to start with, special libraries and APIs and best practices.

What does it cost to use it?
Using the POSEIDON framework is free. All software is open source.

Structure
We use the POSEIDON developer guide in order to convey to you lots of information on the

POSEIDON framework and findings. Throughout the document lots of links will point to more

detailed resources. Our case-study “Developing using the POSEIDON framework by example of a

Healthy Eating App” accompanies this developer guide illustrating how the POSEIDON framework

was used to create a Healthy Eating app.

In the following the content of the sections of the developer guide are shortly presented:

Understanding the POSEIDON framework. This is important in order to get to know the existing

architecture of technology and methodologies how to execute a fine-grained requirement analysis.

Getting started tutorial. We take you step by step through the basic usage of the POSEIDON

infrastructure. You will use the Starter App2 as working example. As the main theme of this tutorial is

the communication with the infrastructure, you will go through code examples from the Starter App

which explain the basic connection to the POSEIDON infrastructure. Links to the different resources

assure that you can start developing.

Extending your app with context awareness. This tutorial explains the process on how you can

integrate generated code from the context awareness methodology into a basic app. This is

important in case you want to develop an app where different automatically detected situations

(contexts) trigger functionality in your app.

Info on user group. Here you can find a concise description on persons with Down’s syndrome as

computer users.

1 http://www.poseidon-project.org/wp-content/uploads/R42-Healthy-Eating-App_v2_final.pdf
2 http://www.poseidon-project.org/wp-content/uploads/StarterApp.zip

http://www.poseidon-project.org/wp-content/uploads/R42-Healthy-Eating-App_v2_final.pdf
http://www.poseidon-project.org/wp-content/uploads/StarterApp.zip

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 4

Ethical, privacy and security principles. Once you have developed your first app idea, please read

these, and check if all of the principles are taken into account.

Design user interfaces for persons with Down’s syndrome. In the first part you will find the general

principles and how POSEIDON recommends to implement them. In the second part you will find

developer guidelines with concrete examples what to use and what to avoid.

Lessons learned during our cooperation with the persons with Down’s syndrome. We address the

requirement gathering, the app design and the app testing phase.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 5

2. Understanding the POSEIDON development Framework
The POSEIDON developer framework is a collection of methodologies, infrastructure, middleware,

tools, specifications, etc. These are things which were used in the development of the POSEIDON

prototype system and part of it. This is partly methodologies, open-source code and free tools of

general use, and partly the POSEIDON infrastructure which can be used for other applications.

A goal of the POSEIDON project was to foster development of inclusive services for people with Down

syndrome, and a commercial POSEIDON solution needs to be extensible with new services. The

development framework is the project’s way of addressing these goals. Here we give an overview of

the framework for new developers, along with references to more detailed information. The summary

is based on project deliverable D5.1, which gives the full description of the framework.

Methodologies
A system development methodology specifies structured ways of creating ICT systems. The framework

describes the following methodologies:

 UC-SDP: User Centered Software Development Process. This software development process

focuses on facilitating stakeholders to co-create intelligent environments.

 eFriend: A set of engineering principles to guide and encourage developers to secure that

ethically sensitive aspects of technology are explicitly addressed in the development of a

product, especially within the Ambient Assisted Living field.

 R4C-AS: A methodology for requirements elicitation in Context-Aware systems. It provides a

structured approach to gather and define the requirements of such systems, including

diagrammatic support, which can be then linked to design and correctness analysis.

The framework also includes tools to support the methodologies. See the Tutorial for context-aware

systems for a practical introduction. Documentation references:

 D5.1 Development framework chapter 3.

 Ethics in POSEIDON: Pdf document available from web.

Architecture and platforms
The POSEIDON solution is a system of various end user applications and different platforms connected

by an infrastructure. The framework architecture describes this infrastructure and how applications

are integrated in this system. Based on the type of services we wanted POSEIDON applications to

provide we have defined a set of services the underlying infrastructure needs to provide to

applications. The figure below shows an abstract view of the services the infrastructure provides and

integrates. Server-side services for holding data and providing shared access is an important part of

this infrastructure.

Individual personalisation of services is especially important for people with Down syndrome, as there

are big differences between individual capabilities and needs. Personalisation needs be possible in all

forms of user interaction, and supporting this is an important aspect of the POSEIDON framework. This

support is two-fold: providing a shared store of personal preferences for applications, and providing

shared storage and standards for content.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 6

Figure 1: A service view of the infrastructure

Another key part of the architecture is the supported platforms and devices for end-user applications.

We make a distinction between stationary and mobile application platforms. Stationary platforms are

for using applications at home or in other stationary locations and are based on laptop and desktop

computers. These have large screens and various input devices, and are suited to primary user training

and secondary user management tasks. Mobile platforms are smaller devices such as phones and

tablets, suited to bringing with you wherever you go and to use outside. These are needed to provide

notifications and guidance to the primary users. We specify a framework for web applications,

responsive to run on all devices. For more specialised functionality, we provide additional support for

stationary training applications developed in the cross-platform framework Unity, and mobile

applications for Android devices. The architecture includes middleware and interaction devices for the

supported platforms.

Documentation references:

 D5.1 Development framework chapter 4.

 D5.2 Prototypic systems of the POSEIDON concept: Describes the integrated prototype

systems produced in the project. It describes the developments in each prototype iteration

and the functionality in the two pilots, giving an overview of the system as a whole. It also

includes technical documentation for components not part of the framework or documented

elsewhere.

Technology infrastructure
The technology infrastructure is provided to implement the architecture. Going through the main

components, we refer to the framework infrastructure overview below, and start with the server-side

services along the bottom of the figure.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 7

Figure 2: POSEIDON framework infrastructure

The file server provides cloud storage of data for POSEIDON applications. Secondary user applications

are used to define personalised instructional content with multi-media, and this is stored here for the

primary user applications to access. The framework includes data specifications for routes for

navigations, shopping lists for money handling and video play lists for instructions, so that new

applications are interoperable with the existing ones. A calendar system is used to connect instructions

to points in time and give notifications. The infrastructure uses the Google Calendar service for cloud

storage of calendar events, but specifies an extended data format including instructions and

multimedia, only supported through POSEIDON-enabled user interfaces. The Tellu SmartPlatform

service is where POSEIDON user accounts are stored, along with a user profile. Tracked data such as

mobile device position is sent here to be available for monitoring.

Another key part of the infrastructure is the Context Reasoner Middleware. It provides context

awareness to mobile applications. Applications connect to it, causing it to perform acquisition of and

reasoning over context, notifying the interested applications of changes. The context awareness part

of the framework also includes a tool for producing context rules and a server-side for collecting data

from the middleware.

The interactive table is a part of the infrastructure for stationary applications. It is a prototype of a new

interaction device, which combines the size of a multitouch table with 3D hand position recognition. It

is intended to be unobtrusively built into tables, allowing the user to control applications via hand

gesture on or over the table.

Documentation references:

 D5.1 Development framework chapter 5.

 D3.2 Reasoning and Learning module: Describes context ontology and definition language for

the context awareness middleware.

 SmartPlatform POSEIDON developer documentation: Developer documentation & API, pdf

available from web.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 8

 Online SmartPlatform documentation: https://smarttracker.no/documentation

 File server API: Pdf available from web.

 Data specifications: Data specifications for calendar events, routes for navigation, shopping

lists and video list. Pdfs available from web. API and data specifications are also collected in

D5.4.

 Interactive table (CapTap) – API: Pdf available from web.

Developer tools and components
The framework includes software and code libraries provided to developers to enable them to develop

POSEIDON applications. Here is an overview of components:

 Tool support for R4C-AS: A set of tools for keeping track of requirements and creating

diagrams.

 Context modelling tool: Tool for creating new rules for the context reasoner of the

infrastructure.

 Android SDK: Mobile application development is facilitated by the Android application

framework and Android Studio development environment.

 Web framework: Web applications are based on JavaScript and the latest HTML/CSS

standards. Our recommended framework includes the AngularJS JavaScript framework and

Bootstrap CSS library.

 Code libraries: Libraries provided include API for connecting to the interactive table, Java and

Android libraries for the two SmartPlatform APIs, and a Unity library for connecting to the

SmartPlatform and file server.

The Mobile application tutorial of these guidelines shows how to develop a POSEIDON mobile

application, making the connections to the infrastructure, including references for detailed

documentation. General documentation references:

 D5.1 Development framework chapter 6.

 Android developer documentation: https://developer.android.com

 POSEIDON code components: http://www.poseidon-project.org/developers/code/

User interface design
The framework also provides specifications, information and graphical elements for user interfaces.

Developer documentation includes guidelines for developing accessible user interfaces, and

information about mobile and web application UI development. A user interface strategy is specified,

considering user requirements. A colour palette and icons are provided, to create applications with a

shared look and feel.

User interface guidelines are collected here, in the User interface section. Documentation

references:

 D2.3 Report of Design of HW, Interfaces and Software: Chapters 2-5 give the basis for the user

interface guidelines.

https://smarttracker.no/documentation
https://developer.android.com/
http://www.poseidon-project.org/developers/code/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 9

 D4.1 Interface strategy: Outlines the user interface strategy for the POSEIDON system, and is

a resource for user interface developers. Documents the different iterations of UI work in the

project.

 D4.2 Adaptive tablet interface: Presents our work on adaptivity in the user interfaces. It

describes adaptivity and personalization in the pilots, and the user interface of the main

POSEIDON mobile application.

 D4.3 Interactive table: Describes the interactive table – the novel input method developed in

the project and used with some of the applications – including prototype implementations and

communicating with computer applications.

 D4.4 Virtual Reality System: Discusses use of Virtual Reality in the POSEIDON solution, and the

prototype implementation, which is mixed reality navigation training.

 D4.5 HCI user and developer manuals: Documentation on user interface design and

implementation. User manuals for pilot 1 and pilot 2 applications are included in this

deliverable, along with developer documentation for user interface implementation.

 POSEIDON icon repository: http://www.poseidon-project.org/product/symbols/

http://www.poseidon-project.org/product/symbols/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 10

3. Getting started - Mobile application tutorial
This tutorial shows how to create an Android application connected to the POSEIDON infrastructure.

POSEIDON provides an Android application project with source code, which we call the POSEIDON

Starter App. This barebones example app connects to the infrastructure, and can serve as an

example and/or a basis for your own app. To get the most out of this tutorial, you should have access

to the Starter App code.

The tutorial goes through the basic usage of the infrastructure, often referring to the Starter App

code. The APIs, data models and libraries used have their own documentation, and there are parts of

the framework not covered by the tutorial. The final section of the tutorial, Further reading, provides

references to all the relevant documentation.

Android SDK
POSEIDON Android applications can be developed much like other Android applications, using the

official Android SDK. The Android platform has a solid application framework and development

environment, used by a very large community of developers. It is well documented on the official

developer website:

http://developer.android.com/

To develop a POSEIDON Android application, it is a big advantage to have Android development

experience. If you have no prior experience, it is a good idea to start with some of the official

tutorials on the developer website. User interfaces and interaction uses the normal Android APIs,

and so is not a focus for our POSEIDON-specific tutorial. Our primary concern is connecting to the

server-side infrastructure, and for this part of application development you will learn enough in this

tutorial to make POSEIDON applications.

Development environment
For the development work, the Android SDK3 is the base, containing the code libraries, build tools

and much more. Android Studio4 is the officially supported development environment, and comes

with everything you need. The Starter App is provided as an Android Studio project. If you have not

installed Android Studio already, doing so is the first step to start development.

POSEIDON Starter App
The POSEIDON Starter App is available from the developer code page of the POSEIDON web site:

http://www.poseidon-project.org/developers/code/

It is provided as a zip archive with all the needed files. Download and unpack this Android project.

Open Android Studio. You’ll want to import the project. If you currently have an open project, you

can use the File menu, select New and Import Project… Otherwise, Import project (Eclipse ADT,

Gradle, etc.) is one of the main choices from the starting screen. This brings up a file browser; select

the Starter App folder. It will then ask to use the Gradle wrapper, which you should OK. It may also

ask you to update the project or download the correct version of the Android SDK.

Looking at the project, the two main parts are java (the code) and res (the resource files). The Java

code is a small collection of classes, mostly Activities, which are the user interface modules. The

resource files are mainly layouts for the activities and graphical resources such as icons. There is also

3 http://developer.android.com/sdk/index.html
4 http://developer.android.com/tools/studio/index.html

http://developer.android.com/
http://www.poseidon-project.org/developers/code/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 11

a manifest file – AndroidManifest.xml. This provides a basic definition of the application as a whole.

Important are the uses-permission elements, which name protected features the application needs,

such as internet access. And each Activity needs to be listed under the application element.

Once everything is set up, you may want to build and run the application (press the green triangle

“play” icon on the tool bar). If you have an Android device, connect it to the computer first, so that

you may run the application there. Otherwise it will run in a virtual device.

The Starter App connects to the SmartPlatform and file server of the POSEIDON infrastructure, which

requires a POSEIDON account. Running the app, it starts with a login screen. If the login is successful,

you are presented with a main menu with some actions which test the infrastructure connections. It

has no functionality other than showing some debug information from the actions. Its main value is

as a basis for new applications and as an example for this tutorial.

Connecting to the server-side POSEIDON infrastructure, as the Starter App does, requires the

following information:

Infrastructure Information Value

SmartPlatform
File server

POSEIDON account user
name and password

Currently created by the SmartPlatform
administrator (Tellu).

SmartPlatform Server address POSEIDON pilot server:
https://ri.smarttracker.no

File server Server address The pilot file server is on the same address as the
SmartPlatform server:
https://ri.smarttracker.no

User interface
As illustrated by the Starter App, a POSEIDON app will typically consist of user interfaces and a little

bit of background logic. Communication with the infrastructure is an important part of the

background logic, and is the theme of much of this tutorial. User interfaces are technically

implemented as in other Android applications, using the mechanisms of the Android platform. The

Starter App is a basic example. Note that this does not attempt to follow POSEIDON guidelines for

usability, as it is mostly background logic and has minimal user interaction.

Activities and layouts
In Android, the Activity is the basic user interface component, meant to represent some activity

where the user interacts with the application. The Starter App has an Activity class for each activity in

the app, containing the user interaction code. Which user interface elements to show on screen and

how they are laid out, is defined in an XML file. These layout XML files are located in res/layout in the

project structure. To make a new function in an application, you can start by making an Activity class

and accompanying layout file (copy an existing set as a starting point).

User interface elements
To get started with your own user interface, you can start with one of the layout files from the

Starter App, and add, remove and move elements. Android Studio has a graphical tool for working

with a layout, letting you drag elements around and see the result.

When you are ready to go beyond the basic functionality of the Starter App, look at the design pages

of the Android developer website, if you are not already familiar with Android UI development. And

https://ri.smarttracker.no/
https://ri.smarttracker.no/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 12

read the user interface guidelines in this document to learn about how to make good, user-friendly

interfaces for the primary user group.

The POSEIDON user interface guidelines recommend using the POSEIDON visual theme to create a

family resemblance between applications. The Starter App includes definitions of the POSEIDON

colours, in res/values/colors.xml. A POSEIDON icon set is available from the project web site, here:

http://www.poseidon-project.org/product/symbols/

SmartPlatform connection – account with preferences
The SmartPlatform server keeps the POSEIDON accounts, and is responsible for authenticating the

user and storing preferences. If you wish to use the file server but not the SmartPlatform server

directly, it is possible to log in with the POSEIDON account through the file server. However, it is

recommended to connect to the SmartPlatform server, to have access to the user profile. The Starter

App logs in to the SmartPlatform server and retrieves the preferences.

The Starter App project includes the SmartPlatform API Android library (findit-rest-android.jar). This

is an Android/Java wrapper for the HTTP REST API. Data is exchanged in JSON format, and the library

uses the org.json Java JSON representation, which comes with Android. In the Starter App, we

manage the use of this API through the class StarterApp. This class extends the Android Application

class, a class which represents the application as a whole, which is created when the application is

created, and which is always accessible to Activities. To use this class for the application object, we

must specify it in the manifest file (android:name under application). We have put the SmartPlatform

interaction there so that it stays in memory regardless of Activities coming and going. In a larger

application, you may consider putting it in an Android Service object.

Logging in
The LoginActivity is the launcher activity of the Starter App – the initial Activity started when

launching the application. It brings up a login screen, for entering the POSEIDON user name and

password. When the user clicks to log in, we call a login method on the StarterApp, which in turn

handles the API transactions. On success, it launches the next Activity, with the main menu.

StarterApp.login shows how we typically start a session with the SmartPlatform server. We use the

AsyncService class from the API library, which handles the transactions in an asynchronous way, with

callback objects being called on success or failure. It is important not to block the main thread with a

network transaction, as that would make the user interface unresponsive.

AsyncService apiService = new AsyncServiceImpl(API_URL);

AsyncService.AccountCallback callback = new AsyncService.AccountCallback() {

 public void onAccountOK(long customerId, String customer) {

 // Login OK

 // now we want to retrieve the asset object representing the primary user

 getAsset();

 }

 public void onAccountError(int code, String message, Exception e) {

 Log.e("StarterApp", message, e);

 }

};

apiService.initiate(USERNAME, PASSWORD, callback);

In the code above, we create the AsyncService object, and run the first transaction. This transaction

sends the user name and password to the server, and if accepted it gets back an authentication

token. This token must be included with all requests to the SmartPlatform server, as well as the file

http://www.poseidon-project.org/product/symbols/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 13

server, which uses the same account and authentication. The AsyncService object handles this for us.

Once the initiate transaction is successful, the object can be used to do other transactions, and we

must keep this object as long as we want to stay logged in. At this point we can retrieve a

ServiceSpec object with various information about the session. We can get the authentication token,

if we need it for the file server.

ServiceSpec ss = apiService. getServiceSpec();

String token = ss.getAuthenticationToken();

Retrieving the asset – primary user profile
Asset objects in SmartPlatform represent tracked entities – in our case primary users. Note that it is

possible for an account to have access to any number of assets. In POSEIDON pilots we have had

accounts with a single asset, for the primary/secondary user pair, as well as tertiary user accounts

with access to a larger set of assets.

The Starter App is made for accounts with exactly one primary user, which means it expects there to

be exactly one asset (if there are multiple, it just selects the first). It retrieves the list of assets

directly after the initiate transaction succeeds. This is a GetTransaction, resulting in a JSONArray of

JSON objects.

AsyncService.DataRetrieveCallback retrieveCallback = new

AsyncService.DataRetrieveCallback() {

 public void onRetrieveOK(JSONArray objects, GetTransaction transaction) {

 JSONObject jo = objects.getJSONObject(0);

 assetId = jo.getLong("id");

 }

 public void onRetrieveError(int code, String message, GetTransaction

transaction) {

 Log.e("StarterApp", message);

 }

};

GetTransaction trans = new GetTransaction(Resources.ASSET);

apiService.doDataRetrieve(trans, retrieveCallback);

When retrieving a list of object, each entry will by default have a minimum of data, to identify the

object but not give details. We are interested in the asset ID, which uniquely identifies the asset and

can be used to retrieve the detailed asset object. In the Starter App, we also get the ID of the

“positionProvider”, which represents a device which can post observations and events into the

SmartPlatform. We show how to post such data later in this tutorial.

Each asset in the list also has a name. If you want to add support for having multiple primary users,

you need to consider the whole list returned by this transaction. If there are more than one, you

could list the names in the user interface, for the user to select one.

Asset properties – user preferences
When we have the asset ID, we can get the complete asset object for this primary user by setting the

ID on a GetTransaction. Note that we use a different callback, for a single JSONObject.

AsyncService.TransactionCallback callback = new AsyncService.TransactionCallback()

{

 public void onTransactionOK(JSONObject object) {

 JSONArray ja = object.getJSONArray("properties");

 // Get name and value of each JSONObject in the array

 }

 public void onTransactionError(int code, String message, Exception e) {

 Log.e("StarterApp", message);

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 14

 }

};

GetTransaction get = new GetTransaction(Resources.ASSET);

get.setId(assetId);

apiService.doTransaction(get, callback);

The asset object holds various information about the primary user, including the last known position.

We are mainly interested in the properties, where we store POSEIDON user preferences and other

settings, to be shared between applications. This is an array of JSON objects. For reading the

preferences, we are interested in the “name” and “value” properties. The Starter App shows how to

retrieve these, listing them all in the user interface when selecting the LIST PREFERENCES option in

the main menu (PreferencesActivity in the code).

An application can update much of the information in an asset, such as a property value, writing the

changes back to the server. To update an existing asset, we must use a PutTransaction.

PutTransaction put = new PutTransaction(Resources.ASSET);

put.setObject(asset);

apiService.doTransaction(currentTrans, callback);

In this code, asset is a JSONObject, like the one returned above. It does not need to be complete; it

only needs the “id” field and whatever data we want to update. But a property object needs to

include a field “typePropertyIdentifier”, as that identifies the property in the SmartPlatform system.

You may modify the JSON retrieved, and then send back the whole thing.

File server connection – cloud storage
The POSEIDON file server provides a common cloud storage for user data. It is used for instructional

content, which is typically entered by a secondary user through the POSEIDON web application or a

special-purpose app, and used by the primary user through primary user apps. Pilot content includes

media, routes for navigation and shopping lists.

The file server has an HTTP API. Files are uniquely identified with a resource ID, and they are

categorized with a type, which is intended to work much like directories in a file system, giving us a

way to organize the files. Uploading a new file assigns it a resource ID. We use this ID to retrieve the

file, and to provide a new version of an existing file. We can get a list of all files, or those of a specific

type.

There is no Java wrapper for this API, so the recommendation is to use java.net.HttpURLConnection

to do HTTP transactions. The Starter App code shows examples of this. The transactions themselves

are all found in the class FileServerTransactions. A number of Activities, available from the main

menu, run these and show the result.

File content
Before you start interacting with the file server, you need to have a clear idea of what you want to

store and/or retrieve. It can be any type of file, but there are some types already defined by the

developer framework and used by other applications. In the POSEIDON project, we found that

instructional content typically has two aspects: some structured data with text, and some associated

media. The structured data could be a shopping list – a set of products with quantities and prices – or

a route for navigation – a list of geographic coordinates with instructions on how to get to the next

point. This is typically stored in JSON or XML format. As we want to use more than just text to convey

the instructions, the structured data may also refer to images, sound or video files. Each of these

media files are uploaded to the file server, where it is given a resource ID. This resource ID is entered

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 15

in the XML or other structured data, to use the media file in the instruction. In this way, an

instructional content such as a shopping list will consist of a set of files.

You can look at the various data specifications of the framework, to see if and how to make use of

one of the existing forms of instructional data (see Further reading at the end of this chapter). Or you

can define your own for a new type of functionality.

Authentication
The POSEIDON account is used for authentication, with the file server connecting to the

SmartPlatform to authenticate the user. The requests must contain the same authentication token as

used for the SmartPlatform API. We have already seen how to get this from the AsyncService if we

have logged in that way. If we only want to use the file server, we can send the user name and

password there, and get back the authentication token. See the method FileServerTransactions.

authOnFileServer for how this can be done.

Retrieving files
To retrieve files, we typically first do a GET request for a list of files, specifying a type if we want to

limit it to that type. This returns a JSON listing the files, with a resource ID and original file name for

each. An MD5 hash is also given, if we already have files cached locally, and we want to check if the

local copy matches that on the server or not.

METHOD GET <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters type (TEXT) (OPTIONAL) Category of the file. Will list only resources in this
category if provided.

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

Example reply:

{

 "image":[

 {

 "resourceID": "b0.jpg",

 "name": "b0.jpg",

 "mime": "jpg",

 "md5": "0A212AE3D160DFB219863D0B22192EC5"

 },

 {

 "resourceID": "b2.jpg",

 "name": "b2.jpg",

 "mime": "jpg",

 "md5": "5A45BCE032195AEFF13C3CAB714002CF"

 }

]

}

Starter App implementation: FileServerTransaction.listResources

Knowing the resource IDs, we can retrieve specific files one by one. This is a GET request with a

resource ID, which returns the stream of bytes making up the file.

METHOD GET <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters resourceID (TEXT) The UUID of the resource to be fetched

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 16

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

The StarterApp method FileServerTransactions.fetchResources shows how this can be done in Java

code, in this case getting an image and showing it directly. Alternatively, the byte stream could be

saved to a file, so that we have it stored locally and don’t need to download it each time it is used.

Uploading files
The File server API specification5 shows how to add a new file, posting with the multipart/form-data

content type. This combines several different entities in one payload, specifically the file type and file

name as well as the file itself in this case. It works well for web applications, but we have not been

able to find a good way to do this in Android code. In Android we therefore have to split this

transaction into two stages, and use the alternative resource2.php on the server.

First, we post the type and filename. This returns a JSON which contains the resource ID assigned to

the new file.

METHOD POST <BASE_URL>/files/resource2.php

Headers X-Auth-Token
Content-Type

<TOKEN>
application/x-www-form-urlencoded

Payload type=<TYPE>&filename=<NAME>

Starter App implementation: FileServerTransaction. addResource

We can now upload the file itself in a POST request, specifying the resource ID in the URL.

METHOD POST <BASE_URL>/files/resource2.php?resourceID=<resID>

Headers X-Auth-Token <TOKEN>

Payload File content

Starter App implementation: FileServerTransaction.uploadFile

In the Starter App code, the AddResourceActivity shows how this is done, using both

FileServerTransaction methods.

If we change a file which is already on the file server, we should upload the new version of the file

using the existing resource ID, so that it replaces the old version. This is exactly the same as the

second stage when uploading a new file, specifying the resourceID in the URL. So this is done with

the FileServerTransaction.uploadFile method.

Deleting files
If a file is no longer used, it should be deleted from the file server, to free the space. This is done with

a simple DELETE request, specifying the resource ID of the file to delete.

METHOD DELETE <BASE_URL>/files/resource.php

Headers X-Auth-Token <TOKEN>

Parameters resourceID (TEXT) The UUID of the resource to be deleted

assetID (TEXT) (OPTIONAL) indicating which asset the resource should be
associated with. This only applies to users that control
multiple assets.

5 Available on http://www.poseidon-project.org/developers/developer-documentation/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 17

FileServerTransaction.deleteResource implements this transaction. The main menu item for deleting

a resource invokes PrepairDeletingActivity to get a resource ID, with DeleteResourceActivity running

the delete transaction.

SmartPlatform edge connection – sending observations
In addition to the SmartPlatform REST API where data objects such as the asset can be retrieved and

updated, this server has another API with its own Android/Java wrapper library. This is the so-called

edge API. A core function of the SmartPlatform is to collect and aggregate data. This may be sensor

data from various sensor devices and gateways, and the platform has various edges to talk to various

device types. From an Android application we can post data in a JSON format to an HTTP edge. A

wrapper library for this is provided as part of the POSEIDON framework, and included with the

Starter App project. The ObservationActivity class demonstrates its usage.

In SmartPlatform terminology, a set of data posted in this way is known as an observation. All

observations posted to the SmartPlatform server is stored in a history database. Both the latest

values and the history may be shown in the monitoring part of the POSEIDON web application. The

main POSEIDON pilot app posts various forms of information. It tracks the position of the user, and

regularly posts the current position. This also includes the battery status of the device. It also posts

log and error messages, as this was used in the research project to see how much each function was

used and which problems occurred.

Device entry
Posting to an edge does NOT require authentication with an account. Instead, the device posting

observations must be registered in the SmartPlatform with a Device entry, with a unique ID used to

identify the source of the observations. Each POSEIDON asset has a device associated with it,

representing the device running the apps. In the Starter App, we retrieve a device ID in the

“positionProvider” field of the asset. This is not the ID we can use to post observations, but rather a

foreign key referring to a device object. StarterApp.getDevice retrieves the device object:

GetTransaction get = new GetTransaction(Resources.DEVICE);

get.setId(deviceId);

apiService.doTransaction(get, callback);

In the device object, we need the field called “uuid”:

public void onTransactionOK(JSONObject object) {

 String uuid = object.getString("uuid");

 AsyncEdgePoster edgePoster = new AsyncEdgePoster(EDGE_URL, uuid);

}

Posting observation
The class AsyncEdgePoster from the edge library handles edge transactions. As shown in the code

above, we need a URL and a device UUID to instantiate an object.

The class Observation in this library represents the data we can post. It has some built-in fields, such

as timestamp and position. The rest of the data is simply a list of key-value pairs, so here we can put

whatever we want to track. The Starter App ObservationActivity posts some test data:

Observation obs = new Observation();

obs.setPropertyAsString("testProp1", "1");

obs.setPropertyAsString("testProp2", "something");

edgePoster.doPostAsync(obs, this);

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 18

Context middleware connection
The POSEIDON Context Reasoner Middleware is an Android component which can run in the

background on Android devices and provide context information to POSEIDON applications. It is a

separate installation, available on Google Play:

https://play.google.com/store/apps/details?id=org.poseidon_project.context

The source code is available on GitHub:

https://github.com/deankramer/POSEIDON-Context

Here we will give a summary of how to use the context reasoner from a POSEIDON application. We

refer to the project deliverables (see Further reading below) for a more detailed description.

Context Observers
The application using the middleware subscribes to specific contexts, to receive a message each time

there is new information about these contexts. The following contexts are available:

 BatteryContext: Monitors the remaining amount of device battery in percent

 WifiContext: Monitors the status of the WiFi receiver on the device, whether it is not active,

disconnected, connecting, or connected to an access point

 TelephonyContext: Monitors multiple parameters of the device’s telephony receiver. This

currently includes connection status, and whether the device is currently roaming

 CompassContext: Monitors the current orientation of the device in degrees.

 LightContext: Monitors the current amount of ambient light, measured in lumens.

 ExternalStorageSpaceContext: Monitors the amount of storage space remaining on the

device shared storage area including the SD card, measured in megabytes (MB)

 GPSIndoorOutdoorContext: Monitors and deduces if the device is indoors or outdoors using

the GPS receiver.

 WeatherContext: Monitors and sends weather data for defined locations.

 StepCounter: Monitors the current number of steps the user walks within a given interval.

 DistanceTravelledContext: Monitors the total distance the device moves within a given

interval.

The middleware is extensible, and both Context Observers and rules for the reasoner can be added,

but this is outside the scope of this tutorial.

Usage
Connecting an app to the middleware requires an AIDL (Android Interface Definition Language) file,

which defines methods for the app code to communicate with the middleware. This file is found in

the source on GitHub, in the following location:

/reasoner/src/main/aidl/org/poseidon_project/context/IContextReasoner.aidl

Copy this into the app project src folder.

To use this interface, the app must first connect to the middleware by calling bindService on a

context (this could be done in an Activity, or the Application object).

Intent serviceIntent = new Intent(IContextReasoner.class.getName());

boolean ok = bindService(serviceIntent, middlewareConnection,

Context.BIND_AUTO_CREATE);

middlewareConnection here is an object implementing the ServiceConnection interface:

https://play.google.com/store/apps/details?id=org.poseidon_project.context
https://github.com/deankramer/POSEIDON-Context

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 19

IContextReasoner contextService;

ServiceConnection middlewareConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

 contextService = IContextReasoner.Stub.asInterface(iBinder);

 }

 public void onServiceDisconnected(ComponentName componentName) {

 contextService = null;

 }

}

If the connection is successful, onServiceConnected is called, and we get a reference to an object

implementing the AIDL interface. To subscribe to context data, we call its addContextRequirement

method, or addContextRequirementWithParameters if the context requires parameters for

configuration. Arguments are the package name of our app, and the name of the context to

subscribe to, for instance:

contextService.addContextRequirement(getPackageName(), "indoorOutdoor");

The middleware will broadcast context updates using Android’s Intent mechanism as long as there

are subscribers to the context. Our app needs to register a BroadcastReceiver to catch the Intents.

The context data is in the Intent extras:

IntentFilter filter = new

 IntentFilter("org.poseidon_project.context.CONTEXT_UPDATE");

BroadcastReceiver contextBR = new BroadcastReceiver() {

 public void onReceive(Context context, Intent intent) {

 Bundle bundle = intent.getExtras();

 String name = bundle.getString(ContextBridge.CONTEXT_NAME);

 String value = bundle.getString(ContextBridge.CONTEXT_VALUE);

 }

};

registerReceiver(contextBR, filter);

Finally, we must call removeContextRequirement when the subscription is no longer needed, so that

the middleware can stop its observing and reasoning:

contextService.removeContextRequirement(getPackageName(), "indoorOutdoor");

Further reading
Here is a collection of references to other documentation relevant for developing POSEIDON Android

applications. All is available from the POSEIDON website, in the developer documentation section

unless otherwise noted.

User interfaces

 User interface section of these guidelines.

 D4.2 Adaptive tablet interface: Adaptive aspects in the implemented POSEIDON app

interface.

 D4.5 HCI user and developer manuals chapter 4: Android User Interface Implementation –

describes important aspects of the Android platform in relation to user interaction

(summarised in the user interface guidelines).

SmartPlatform

 SmartPlatform-developer-doc.pdf: Developer documentation for the SmartPlatform part of

the infrastructure, including API specification.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 20

 rest-lib-java: Documentation for the SmartPlatform API wrapper library (Javadoc) is included

in the rest-lib-java archive available from the Code section of the POSEIDON website.

 edge-lib-java: Documentation for the SmartPlatform edge wrapper library (Javadoc) is

included in the edge-lib-java archive available from the Code section of the POSEIDON

website.

 D5.1 Development framework, chapter 5.1: Description of the platform and its role in

POSEIDON.

File server and data specifications

 File-server-API.pdf: Specification of the file server HTTP API.

 Route-data-specification.pdf: Developer documentation for route data for navigation.

 Shopping-list-data-specification.pdf: Specification of JSON data for shopping lists.

 Video-list-data-specification.pdf: Specification of JSON data for video lists.

 D5.1 Development framework, chapter 5.2: High-level description.

Context middleware

 D5.1 Development framework, chapter 5.4: Developer documentation for the middleware.

 D3.2 Reasoning and Learning module: Background documentation for the context reasoning

(available on the Deliverables page of the website).

Calendar integration
The POSEIDON developer framework also specifies use of calendar data. The Google Calendar service

is used to store the calendar events, but with POSEIDON-specific structured content. As with other

instructional content, this can refer to media files on the POSEIDON file server.

 Calendar-data-specification.pdf: Data specification and other developer information.

 D5.1 Development framework, chapter 5.3: Architecture and conceptual model.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 21

4. Tutorial for context-aware systems

Context-awareness Development Framework
As part of the project activities we have refined and created a set of methods and tools to support
the creation of context-aware systems. These are complex systems which so far do not have specific
support, see (Alegre et al., 2016)6. Amongst the benefits of adopting these guidelines are that we can
ease the creation of more reliable context-aware systems, reduce the implementation time of
context-aware features in the long term and they cover most common development stages.

The overall strategy for developing systems which was applied to POSEIDON is the User-centred
Intelligent Environments Development Process (pictured below). The generic process was explained
in (Augusto, 2014)7 and its application to POSEIDON was explained in (Augusto et al., 2017)8.

Each stage can have its own specific methodologies and tools which can be combined and

complemented in any way. We also refined specific methods and tools for requirements and design

explained below.

6 Unai Alegre, Juan Carlos Augusto, Tony Clark (2016). Engineering Context-Aware Systems and Applications: A
survey. Journal of Systems and Software Vol. 117, pp. 55-83. ISSN 0164-1212. Elsevier.
7 Augusto, Juan Carlos (2014). A user-centric software development process. In: The 10th International
Conference on Intelligent Environments (IE’14), 29 Jun – 04 Jul 2014, Shanghai, P.R. China.
8 J. Augusto, D. Kramer, U. Alegre, A. Covaci and A. Santokhee (2017). The User-centred Intelligent
Environments Development Process as a Guide to Co-create Smart Technology for People with Special
Needs. To appear in Universal Access in the Information Society, Springer. 2017.

http://www.sciencedirect.com/science/article/pii/S0164121216000467
http://www.sciencedirect.com/science/article/pii/S0164121216000467
http://www.iospress.nl/book/recent-advances-in-ambient-assisted-living-bridging-assistive-technologies-e-health-and-personalized-health-care/
http://eprints.mdx.ac.uk/21032/
http://eprints.mdx.ac.uk/21032/
http://eprints.mdx.ac.uk/21032/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 22

Requirements Gathering Approach
This helps understanding and agreeing what is expected from the final product. Our method follows
several stages outlined in (Evans et al., 2014)9 and then extended by (Alegre et al., 2016)10. The
following picture captures the main steps of the process:

The forest of this section illustrates the process of identifying the contexts that matter and how to
implement them. Stakeholders are identified and listed in the following table:

9 Carl Evans, Lindsey Brodie, Juan Carlos Augusto (2014). Requirements Engineering for Intelligent
Environments. In: Proceedings The 10th International Conference on Intelligent Environments (IE’14), pp. 154-
161. 29th June-4th July 2014, Shanghai. IEEE Press.
10 Unai Alegre, Juan Carlos Augusto, Tony Clark (2016). Engineering Context-Aware Systems and Applications: A
survey. Journal of Systems and Software Vol. 117, pp. 55-83. ISSN 0164-1212. Elsevier.

http://www.eis.mdx.ac.uk/staffpages/juanaugusto/EvansBA2014.pdf
http://www.eis.mdx.ac.uk/staffpages/juanaugusto/EvansBA2014.pdf
http://www.sciencedirect.com/science/article/pii/S0164121216000467
http://www.sciencedirect.com/science/article/pii/S0164121216000467

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 23

The following activity diagram shows typical activities involved in a bus journey:

The following table identifies different expected services by different stakeholders:

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 24

Then situation of interest are identified:

Then we need to identify what is required to detect those Situations of Interest when the real system

is deployed and operative:

The methodological framework facilitates a more systematic analysis on all the contexts needed in a
system, it support developers on thinking about contexts, encourages co-creation from early stages.
This process is supported with tools which ease the information management and help tracing the
relations between contexts at different stages of the development process:

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 25

We also used a methodological framework to guide developers into creating diagrammatic views of
the system to help them visualize a solution and explore options. Again this was supported by tools
which, as a side effect also facilitate the inclusion of other. The structural models created allows to
define more specific elements like context variables, and to configure code generation:

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 26

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 27

5. Technology use of persons with DS
People with Down syndrome represent a unique target group since three major types of capabilities

(first cognitive, but also to some extent motor and perceptual) are affected. The capabilities and

disabilities often vary to a high extent from person to person with Down syndrome. Furthermore, each

person with Down syndrome shows individual characteristics related to heredity, training and the

social environment around him/her. Thus, only some generalisations are possible for persons with

Down syndrome. The high individuality represents a major challenge for a technical development and

underlines the importance of a user-centred design approach with many possibilities for

individualisations. Despite the wide range of competencies and impairments, common problems for

people with Down syndrome are:

 Limitations in vision and hearing, disturbed sensory skills, including hyposensitivity when

touching something, problems with fine motor movements

 Weak muscles in arms and fingers

 Limitations in short term memory and cognition, including problems with verbal auditory

memory, hence it is harder to recall information that is heard than what is read or seen

 Limitations in communication skills. Delayed development of receptive and expressive

language. They often understand much more than they can express (receptive language is

superior to expressive language). They have a relative strength in vocabulary and pragmatics

and more difficulties with morphology and syntax. They also in general have reduced speech

intelligibility. This lead to problems with complex conversational skills. (Overview: Lazar, Kumin

& Feng, 2011)11.

It is important to recognise both the strengths and difficulties a person with Down syndrome has. As

McGuire and Chicoine (2006)12 note, most children with Down syndrome enjoy and learn from social

interaction with family and friends. As time goes by, they often have good social and emotional

understanding, and most are able to develop age-appropriate behaviour, if this is encouraged and

expected. People with Down syndrome generally learn visually; this is probably why reading can

sometimes be a strength. This means that they learn best from watching and copying other people,

and may find it easier to take in information if it is presented with the support of pictures, gestures,

objects and written words. Using their hands, faces and bodies to communicate is another strength,

and many people with Down syndrome enjoy drama and movement because of this strength. The

approach taken within POSEIDON should always build on the strengths of people with Down syndrome

while keeping the possible limitations in mind.

People with Down Syndrome as computer users
The possible limitations and characteristics of people with Down syndrome have a major impact on

the usage of technology and underline the need for usability-focused and user centred design. The

goal is not only to develop technology that is easy to use in general, the technology must also be useful

to the user in spite of his/her possible limitations. The limitations in cognitive, language and motor

skills all have a profound impact on computer usage for persons with Down syndrome. They have e.g.

11 Lazar, J., Kumin, L., & Feng, J. H. (2011): Understanding the computer skills of adult expert users with Down
syndrome: An exploratory study. In The proceedings of the 13th international ACM SIGACCESS conference on
Computers and accessibility. ACM, 51-58.
12 McGuire, D. & Chicoine, B. (2006): Mental Wellness in Adults with Down Syndrome: A Guide to Emotional
and Behavioural Strengths and Challenges. Bethesda: Woodbine House.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 28

difficulties in remembering, processing information, understanding abstract concepts, reading,

writing, communicating, navigating, typing and using the mouse. These limitations present major

challenges both for users, designers and technicians. Nonetheless the diversity of capabilities is a

problem, but many persons with Down syndrome can use PC, tablets and smart phones surprisingly

well.

In POSEIDON, we have looked at studies and extracted guidelines from the findings. The findings

suggest that computers and computer devices are of great importance for people with Down

syndrome because they can help to increase confidence and motivation through creative activities and

web browsing. Using the computer has other benefits as well, including errorless learning, patient and

immediate feedback, self-paced learning and independence of learning. It should be stated also that

all those benefits and useful features are dependent on developing a technology which meets the

heterogeneous demands of the target group.

The following table combines a study on preferences of people with Down syndrome with the more

general “Information for all” standard. The first is an in-depth study of a small number of people with

Down syndrome. The second is a standard for people with intellectual disabilities in general, and

focuses on making information easy to read and to understand on different media. Both share the idea

of using as simple wording as possible, and both strongly suggest the use of photographs and images

to support the idea presented with words. The recommendations for the use of animations differ, but

this is based on different usage of the animations. For example, if animations are always placed on the

screen it can be distracting. On the other hand, some personalized animations used as reward system

can be motivating. Furthermore, a general rule is to avoid everything unexpected, like e.g. pop-up

windows.

Guideline subject Preferences of people with Down
syndrome

“Information for all” people with
intellectual disabilities

Font - Bright, adding depth
- Large
- Bold
- Stylized
- No font decoration

- Not serif fonts, rather Arial,
Tahoma

- Enough spacing between letters
- Not italics and/or underlining
- No shadows, especially in writing

design
- Large fonts, at least like Arial 14
- One font throughout text

Colour - Darker: blue, purple, grey
- Combinations of primary colours

with high contrast
- Tints and tones
- Complimentary colours
- No dull colours

- Avoid a background colour or a
background with pattern that can
make the contrast between text
and background poorer

Graphics/Images - Cleary identifiable
- Naturally coloured not digitally

manipulated
- With people of similar age or

older
- Action images
- Photographic better than

illustrated
- Fun and whimsical illustrations

- Photographs, drawings, symbols
- Don’t use images for younger

people than the target age group
- Clear, not too disturbing to look at
- Fit to the text

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 29

Animations - Bright colour
- With motion
- Animating colour
- Personalized

- No animations on screen

Buttons - Largest was clicked first
- Dark background
- Light text on top
- Expected action clear
- Framed
- Arrows pointing to buttons
- No spatial preference

- Large button to change size of the
writing

General on
websites

 - No pop-ups
- No large programs (hardware,

internet speed restrictions)
- Search tool
- Easy-to-read in metadata

Homepage - Clear what website is about
- Phone number to contact person
- Postal address to contact person
- E-mail address to contact person
- Easy-to-read symbol if the content

is tested according to easy to read
principles

Navigation - Clearly show on which part of the
website one currently is

- One click to homepage
- Same navigation bar on the same

place throughout the website
- Not more than 7-8 menu choices

Screen - Whole text on one screen
- No lateral scrolling
- Menu of sections at top
- Easy to return to top
- Space between paragraph
- No animations

Links - Words, not pictures, should contain
links

- Underlining of links
- Hiding long link behind word
- Blue if not clicked
- Purple if already clicked

Words - Well known
- Explain complex words
- Use examples
- No initials
- Do not use metaphors
- Do not use word from other

languages

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 30

- Use words in full, not initials
- No percentages, no large numbers

use “few”, “many” instead

Sentences - Short
- Direct speech
- Address in 2nd person e.g. “you”
- Positive
- Active

Information order - Group information about topic
- Important information at the top
- Repeat important information
- Repeat explanation of difficult

words if words are used several
times

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 31

6. Ethical and privacy concerns

Ethical Framework
When developing AAL related applications, like POSEIDON , we recommend applications to adhere to
the eFriend Framework (Jones et al., 2015)13. This framework was informed by the Intelligent
Environments Manifesto (Augusto et al., 2013)14 supporting the following principles:

 P3: Deliver help according to the needs and preferences of those who are being helped.

 P5: Preserve the privacy of the user/s.

 P6: Prioritise safety of the user/s at all times.

 P9: Adhere to the strict principle that the user is in command and the computer obeys.

The eFriend framework relies on the developer following these simple principles:

1. Non-maleficence and beneficence: systems should be created to not cause any harm,
particularly to primary users. Systems should aim to bring social benefits to users, by the
increase in their quality of life.

2. User-centred and multiple user groups: it is important to identify and accommodate the
different preferences of various users and their potential conflicts and incompatibilities.

3. Privacy: The users of such systems should retain the ability to exercise control over
monitoring, tracking, and recording activities in the systems. Users should be able to adjust
privacy settings for different POSEIDON compatible services.

4. Data Protection and Security: All data collected in the process of running POSEIDON
compatible services must comply with relevant data protection legislations in the territories
in which they are consumed e.g. the UK Data Protection Act 1998. Users should also be
capable to choose what personal information can be accessed, and how it can be used.
Security is a responsibility you should take seriously, including maintaining safety and
security of any collected, processed, or stored data.

5. Autonomy: Another important foundation for user trust. Primary users should be enabled to
specify and adjust their level of autonomy. This can include the reconfiguration,
customization, and overriding of components in the POSEIDON system, allowing the user to
take control.

6. Transparency: It is important that primary users of POSEIDON compatible systems know and
understand how different services can affect their lives in positive and negative aspects. This
can be handled by making background tasks including surveillance more visible to the user.

7. Equality and Dignity: Developers should try to ensure the accessibility and affordability of
devices, systems, and services to the primary user. Systems designed to be POSEIDON
compatible should ensure social inclusiveness by accommodating different levels of
cognition, competence and technical ability. These systems should under no except
undermine user dignity, including stigmatising the user.

The most important step by the developing team is to embed these principles in the product, starting

by having requirements which are related to each of the principles. In some systems, some principles

will be more important than others so there will be represented with varying number of

requirement, at least one per principle. In the design phase, this will include the embedding of these

13 Jones, Simon and Hara, Sukhvinder and Augusto, Juan Carlos (2014) eFRIEND: an ethical
framework for intelligent environments development. Ethics and Information Technology, 17
(1). pp. 11-27. ISSN 1388-1957. Springer Verlag.
14 Augusto, J.C., Callaghan, V., Kameas, A., Cook, D., Satoh, I. (2013) Intelligent Environments: a manifesto.
HumanCentric Computing and Information Sciences, 3:12, Springer. DOI: 10.1186/2192-1962-3-12 URL:
http://www.hcisjournal.com/content/3/1/12

http://www.hcisjournal.com/content/3/1/12

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 32

ethical principles in the system architecture and functional specifications. This will be followed by

their incorporation into formal methods, behavioural properties, and system agents in the

implementation phase. Following the installation of the system, formal verification and validation of

the system will ensure that its behaviour is consistent with the key ethical principles. In the testing

phase, pre-pilot studies will be conducted so that the capabilities of the hardware and software used

are fit for purpose and fulfil the requirements. This should be accompanied by usability testing with

different prototypes, involving field trials and pilot tests from which detailed feedback can be

gathered from users.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 33

7. User interface guidelines
Here is a collection of guidelines for user interface design and implementation. It is a good idea to

read through these if you will be doing user interface design for a POSEIDON application.

POSEIDON guidelines for developing accessible user interfaces
This section provides guidance on usability and accessibility for the designers, developers and the

ones responsible for testing and evaluating the POSEIDON system and its services. It provides a

collection of practical advice of how to design the interaction so that it meets the requirements and

capabilities of the target group of POSEIDON. The goal has been to try to keep these guidelines as

simple as possible.

These guidelines are based on several existing guidelines. The most important references are:

 Principles of universal design15

 Information for all: European standards for making information easy to read and understand16

(follows this document as separate attachment)

 Cognitive Accessibility User Research of W3C17 Principles of universal design

Universal design is more than accessibility. With a focus on universal design we can have a more

holistic approach to how we develop the POSEIDON system and services.

The concept of universal design is based on the design of products and environments to be usable by

all people. Some of the principles are difficult to apply to ICT-based products and services. A subset

of the principles for universal design will, however, apply for POSEIDON applications. In addition, we

propose some implications these will have for such applications:

Principle 1: Equitable use

The design is useful and marketable to people with diverse abilities.

Principle 2: Flexibility in use

The design accommodates a wide range of individual preferences and abilities.

POSEIDON recommendations

 All users should be allowed to adjust their preferences for how the system should communi-

cate with them (e.g., size of fonts, contrasts, colours, etc.). Enabling assistive technology such

as synthetic speech (i.e., multimodality) is important.

 If a user has tremor, or problems with fine motor skills, and tapping a tablet/smartphone with

her fingers could be problematic, the system should be set up so that it is more tolerant for

user errors, timing for accepting that a button is pressed etc.

Principle 3: Simple and intuitive use

Use of the design is easy to understand, regardless of the user's experience, knowledge, language

skills, or current concentration level.

POSEIDON recommendations

 Only relevant actions should be displayed in the user interface.

15http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-

design/
16 http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf
17 https://w3c.github.io/coga/user-research/#down-syndrome

http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-design/
http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-design/
http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf
https://w3c.github.io/coga/user-research/#down-syndrome

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 34

 All (most) action buttons should be located at the bottom of the screen, and they should

always be visible.

 Help/information should always be located at the bottom-right corner of the screen, or to the

right from the specific location where help or additional information is available.

 Search (if relevant) should always be located at the top-right corner of the screen.

 Action buttons should be a combination of icons and text. Exceptions may be made for the

user interface, such as lists of choices created by the end-user and where suitable icons are

not available, or when uploading of an icon is not provided.

 Focus points of a video service should always be at the centre of the screen (important for

video content).

Principle 4: Perceptible information

The design communicates necessary information effectively to the user, regardless of ambient

conditions or the user's sensory abilities.

POSEIDON recommendations

 Regardless of context of use, all information on the screen should be easily readable and

understandable.

 Textual information presented to the end-user must be meaningful, and consider the end-

users’ capabilities and cultural frame of understanding.

Principle 5: Tolerance for error

The design minimises hazards and the adverse consequences of accidental or unintended actions.

POSEIDON recommendations

 When the end-user enters wrong data, or is using the system in a "non-predicted" way, the

system should be "forgiving" and provide guidance to the end-user, and help to recover the

error.

 If there are technical problems (disturbances in data communication, internet connection

failure etc.), the system should still try to provide meaningful information to the end-users.

Principle 6: Low physical effort

The design can be used efficiently and comfortably and with a minimum of fatigue.

POSEIDON recommendations

 This principle is important when handling tools, opening doors etc. The POSEIDON system that

will be operated on tablet PCs and/or smartphones will require very low physical effort.

Principle 7: Size and space for approach and use

Appropriate size and space is provided for approach, reach, manipulation, and use regardless of

user's body size, posture, or mobility.

POSEIDON recommendations

All action buttons both on the web and on tablet PCs and smartphones must be large and easy to

click/tap.

Design methodology for mock-up development
To achieve the goal of highly usable applications, it is important to start the interaction design by

developing high-level mock-ups (paper prototypes). These could be pictures of the user interfaces.

This helps the design team to figure out how the application should work, what input does it require,

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 35

and what kinds of output are expected. When the users perform an action "using" the mock-up, they

do have some expectations for what will happen.

The initial design cycle should work to identify the end-users expectations, and at the same time

identify what information is needed from a developer's perspective to make the system work, and to

provide the expected result.

When developing mock-ups (high-fidelity paper prototypes), and POSEIDON user interfaces in

general, there are some very central design principles to follow18:

Principle 1: Learnability

The user interface should be easy to use from the first time a user interacts with it. There should be

no need to learn new functionality or new ways of user interaction. The system should be based on

recognition rather than the need to recall previous experiences.

POSEIDON recommendations

 All action buttons should be located at the bottom of the screen, and they should always be

visible, common tasks should be located at the same place all the time, such as help, search,

information etc.

 Based on the experience of the system, the first time a user uses the application some help

and guidance should be provided, and after some times of use the help and guidance should

be less intrusive.

Principle 2: Efficiency

The number of steps a user takes to complete a task should be as few as possible. The need for hori-

zontal and vertical scrolling should be kept to a minimum. Wizards should be used to simplify com-

plex interactions. Real world metaphors should be used where applicable. Less is more: most likely

we need to leave stuff out.

POSEIDON recommendations

 Main device-orientation is horizontal in the case of tablets. For smartphones, the vertical

orientation is preferable.

 All scrolling is vertical – no horizontal scrolling.

 All action buttons are located at the bottom of the screen, and are always visible. Exceptions

to this may be buttons to handle the video content (e.g. Start-button in the middle of the

screen and the like).

 Only relevant functionality should be visible.

 All information and help texts should be context sensitive, the information and help text

should be relevant and to the point.

Principle 3: Error recovery

18 Adapted from: http://www.slideshare.net/OpenRoad/mobile-ui-design-user-centered-design-and-ui-best-
practices, http://www.google.com/about/company/philosophy/,
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractic
es/UEBestPractices.html, http://designfestival.com/5-principles-of-user-centered-interface-design/,
http://www.netmagazine.com/features/10-principles-mobile-interface-design,
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-
mobile-user-experiences/

http://www.slideshare.net/OpenRoad/mobile-ui-design-user-centered-design-and-ui-best-practices
http://www.slideshare.net/OpenRoad/mobile-ui-design-user-centered-design-and-ui-best-practices
http://www.google.com/about/company/philosophy/
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractices/UEBestPractices.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractices/UEBestPractices.html
http://designfestival.com/5-principles-of-user-centered-interface-design/
http://www.netmagazine.com/features/10-principles-mobile-interface-design
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-mobile-user-experiences/
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-mobile-user-experiences/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 36

The system should be designed so that it is hard or even impossible for a user to make mistakes.

However, when a user mistake occurs, this should be clearly communicated with information on

which actions to take to continue the use of the system.

If there is a system error, this should also be communicated in a clear way, with simple and under-

standable information to the end-user. All error messages should be useful. The system should

provide guidance on how the user should recover from the error.

POSEIDON recommendations

 There are three different types of errors that need to be addressed and have a consistent error

recovery methodology.

o User error

o Device application error

o Server application error (including error on services invoked from the POSEIDON

system)

 It should not be necessary to re-enter any data when an error situation appears.

 When restarting the app or service, it should launch at the same state as it was when the error

occurred.

 The system should be "forgiving" on user errors and provide mechanism for graceful

degradation of functionality when an error situation occurs.

 E.g., if the video service is not responding, the system should continue to work (just not display

the video), and the "space" used for the video should not be left blank.

Principle 4: Simplicity

Tasks frequently performed should be easy to do, and less common tasks should be possible to do.

Unnecessary functionality should be avoided. The layout and design should be uncluttered.

The navigation should be narrow and shallow, providing only necessary functionality. For this, we

need to understand profoundly the context of when and where our users will use the system.

POSEIDON recommendations

 There should not be more than maximum three levels of navigation, ideally there should only

be one level of navigation in the POSEIDON system.

 The design and design elements should be clean and simple.

 Where applicable, well-known principles and best practice should be applied.

Principle 5: Mapping

What the user expects to happen is what should happen. There should be a mapping between the

conceptual model the user has of the system, and how the system actually works.

POSEIDON recommendations

 The conceptual model behind the POSEIDON system should be well documented and de-

scribed.

Principle 6: Visibility

The most important information should be most visible, and less important information should be

less visible. When using a touch interface, no button should be smaller than the user's fingertips plus

"necessary margin" for users with tremor or problems with fine motor skills.

POSEIDON recommendations

 Only relevant actions should be displayed.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 37

 All buttons should be of an easily press able size, with clear boundaries.

 Buttons should not be smaller than the size of the thumb.

Principle 7: Feedback

The user should be in control of the interface and not the other way around. The system should

provide quick responses. If the response will take some time a progress bar or some other useful

information should be provided. Speed and responsiveness are crucial for the user experience.

In today’s computing environment one second is an "eternity" to wait for response from the system

or application. If a system does not respond within a reasonable time frame, the users will assume

there is an error and try again, or press other buttons that will null-out existing action causing con-

fusion and a bad user experience.

POSEIDON recommendations

 If an action takes more than one second, a progress bar or other relevant information should

be displayed to the end-user.

Principle 8: Consistency

Identical items, and identical functionality should always be displayed and behave the same way

across the entire system/application.

POSEIDON recommendations

 All agreed common user actions should be tested and documented.

 All confirmation, information, help and error "pages" should have the same look-and-feel

throughout the system.

 The system should be as predictable as possible.

Principle 9: Satisfaction

The users should enjoy using the POSEIDON system/software. The software should perform its

expected tasks well and nothing more. If she would like to perform another task, she would most

likely use another application (or system).

POSEIDON recommendations

 Only core-functionality should be provided by the POSEIDON system.

 For secondary functionality, we should defer the end-users to other applications that solve

those tasks well.

Principle 10: Predictability

When a system follows the principle of predictability, the user would know what to expect from the

system: The behaviour is consistent throughout the application/system/service. With a consistent

user interface the user will not experience surprises. When a user presses a button, or invokes a

service, it should be evident for the user what to expect, and it should also be evident how the

results will be presented.

To ensure a predictable user experience, it is important to understand the targeted users' expectati-

ons and the conceptual models19 they have for the system they are using. If we design a system

based on a different conceptual model than the one of the end-users', the user interaction and how

they use the system will never match the anticipations of the developers, and the system will score

19 In this context, a conceptual model is the mental model an end-user has of how the systems works, and the
end-users understanding of how different services and functions provided by the system works. An end-user
will use the system based on the mental model she has on how the system works.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 38

low on usability and expectations of the users. If the system is designed following the conceptual

model of the end-users, we will get a high score on usability, because the behaviour of the system is

what the end-users predict. The system and the user interaction follow the users’ expectations.

Ideally there should not be any surprises for the end-user when using the system. If something

unexpected happens, the methods for solving the unexpected should be predictable and well known

by all users.

POSEIDON interface design guidelines
The POSEIDON project and pilot applications have tried to implement a common POSEIDON theme.

Important elements here are choice of colour palettes and the idea behind the icon design. The idea

is to provide a "family resemblance" between different POSEIDON applications, so that the user

always understands that she in inside the POSEIDON system. If you design an application to be used

alongside other POSEIDON applications, it is a good idea to try to stick to this POSEIDON style, at

least if the application is targeted at primary users. These are the guidelines for implementing the

POSEIDON style.

The colour schema

 The main requirement is good contrasts everywhere, in all elements of the user interfaces.

 Make the colour "skins" available in an easily adjustable way, not hard-coded in all SW.

 For (at least) first prototypes, start with light backgrounds and dark text, buttons etc.

POSEIDON colours:

System: RGB code System: Hex code

Black R: 0 G: 0 B: 0 Black #000000

White R: 255 G: 255 B: 255 White #FFFFFF

(POSEIDON)
Turquoise

R: 53 G: 132 B: 140 (POSEIDON)
Turquoise

#008080

(POSEIDON)
Orange

R: 241 G: 165 B: 50 (POSEIDON)
Orange

#F1A532

Red R: 255 G: 0 B: 0 Red #FF0000

Blue R: 28 G: 120 B: 204 Blue #1C78CC

Grey R: 174 G: 167 B: 159 Grey #AEA79F

For visually impaired users, a POSEIDON primary user application should provide high contrast

alternatives, such as black-and white palettes, in addition to the "branded" POSEIDON palette. This is

very important for the readability of the text elements.

Text elements

 Font: Use only sans-serif screen fonts – no exceptions. CALIBRI/Calibri, or if not available,

ARIAL/Arial. (Not Times New Roman or the like).

 High contrast choices everywhere, even if "neighbouring elements" would not follow the

same principle, e.g.: two buttons beside each other where text is in different colour Black

text on grey background White text on blue background.

 Always as large text as possible – even larger than what might feel "normal".

 All text must be implemented as character-based text, not images of text (for enabling

synthetic speech later).

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 39

 No ALL CAPS text, no capital letters in the middle of expressions when not necessary (e.g.

'Start here', not 'Start Here') – this to harmonise the design and make it "calm". This can be

changed later if necessary (NB. Conventions in different countries are different here!).

 No Italics – at least long texts. It is difficult to read.

 Normal, easy to understand language. No unfamiliar abbreviations or computer science

jargon.

Action button design
Rounded edges:

"Flat design" (no outline): No 3D-effects: (to harmonise initial design)

Text and place(holder) for transparent icons:

Icon library
A set of icons developed in the POSEIDON project is available as part of the framework:

http://www.poseidon-project.org/product/symbols/

Here are some guidelines for creating new icons:

 All icons must be designed as transparent images, with high contrast against all possible

backgrounds.

 All icons must follow "similar design". E.g., not a mixture of photo icons, pencil drawings and

high quality graphics.

 Icons should when possible be combined with text.

 Symbols and terminology should be used consistently throughout the applications and

systems in POSEIDON.

Decorative elements

 Do not use any unnecessary decorative elements such as boards, background images or the

like.

 Do not use any animations (moving, blinking items) if not necessary for explaining

something, e.g. a screen-cast connected to user support sections.

Navigation

 Allow the user to go back or "regret".

 Allow the user to start from beginning (Home, Start page).

 Show the user where s/he is "just now".

Scrolling

 Avoid scrolling.

 Avoid horizontal scrolling.

Actions and feedback to end user

 Let the user initiate actions, e.g. by clicking on buttons – even if not technically necessary.

 Acknowledge actions: show that a button is clicked on, that something may take time etc.

Text
Text

http://www.poseidon-project.org/product/symbols/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 40

Language, national data formats

 Create a language library which allows alternative expressions and new languages be

deployed without re-programming all software.

 Dedicate a work force to create an as compact and easy-to-read language as possible,

especially for buttons.

 Make it possible to use familiar (diverse) formats for date, time, monetary units etc.

Help and support

 Provide help. Enable help to be added to the software "anywhere".

 Use commonly understandable, clickable symbols for more information, e.g.

 Do not require the user to type information that the system already knows.

Look and feel

 We want the POSEIDON software to be as familiar and self-explanatory as possible.

 Strive for realisation of look and feel. Look and feel is a term used in respect of a graphical

user interface and comprises aspects of its design, including elements such as colours,

shapes, layout, and typefaces (the "look"), as well as the behaviour of dynamic elements

such as buttons, boxes, and menus (the "feel")20.

 Create family resemblance between all parts of the POSEIDON software by sticking to the

rules in this document – even if you would personally disagree with something.

 Brand all apps with the POSEIDON app logos or banners. However, do not let these dominate

the interface.

Responsive design

 We want the POSEIDON software to be usable across a variety of devices, depending on the

end user's preferences.

 Strive for realisation of responsive design. Responsive web design is an approach to web

design aimed at crafting sites to provide an optimal viewing experience—easy reading and

navigation with a minimum of resizing, panning, and scrolling—across a wide range of

devices (from desktop computer monitors to mobile phones)21.

Accessibility

 We want the POSEIDON software to be usable, useful and easy to use for a variety of end

users with different levels of abilities.

 Strive for realisation of accessible solutions on all POSEIDON platforms. Accessibility can be

viewed as the "ability to access" and benefit from some system or entity. The concept

focuses on enabling access for people with disabilities, or special needs, or enabling access

using assistive technology22.

 This document is just a short "start package" for the software team. For all more advanced

accessibility issues, se accessibility guidelines such as23.

20 http://en.wikipedia.org/wiki/Look_and_feel
21 http://en.wikipedia.org/wiki/Responsive_web_design
22 http://en.wikipedia.org/wiki/Accessibility
23 http://www.w3.org/standards/webdesign/accessibility

http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Responsive_web_design
http://en.wikipedia.org/wiki/Accessibility
http://www.w3.org/standards/webdesign/accessibility

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 41

Android user interaction implementation
We have collected guidelines and tips for user interface implementation on the Android platform. A

more extensive text on the subject can be found in deliverable D4.5, chapter 4. The following points

are extracted from that text.

 The Android system usually have three navigation buttons/icons along the bottom of the

screen, such as back and home buttons. They are the intended way to navigate between

functions in the device, and some of them are completely outside the control of the app.

Make sure to take both their functions and positions into consideration when designing a

user interface.

 Using the back button, the user should be able to backtrack in our app, and leave the app

when backtracking beyond the first screen.

 The Android navigation and system bars can be hidden when not needed, to maximize the

available screen space, but keep in mind that the user can always bring them back. Since we

cannot completely hide or control them, it may be best to leave them on screen, to avoid

confusion.

 Try to minimize the need for keyboard input, as the on-screen keyboards on Android devices

can be quite small and cumbersome to use.

 When keyboard input is available, make sure that the layout can handle the keyboard taking

over much of the screen space. Make sure the keyboard does not hide the most essential

information on the screen.

 Keep in mind that an application can lose focus or be shut down at any time (such as when

the user presses the home button, or a phone call comes in). Make sure that the state of the

application is preserved when this happens, and restored when it is shown again.

 Save changes made by the user when the user leaves a view. Show a little message to notify

the user that changes were saved.

 Try to keep a clear separation between the user interaction logic and the concrete

implementation in graphical elements, so that it is possible to change this implementation or

provide alternatives based on user abilities and preferences.

 Use the Android resource system with qualifiers for alternative versions of resources. This

makes it easy to handle adaptations to different languages, screen properties, colours and

styles.

 Do not define text, font size, dimensions or colours directly in a layout file. Such properties

are best defined one time in their own resource files, and referred to in layouts. This way

they can be varied and changed independently of each other.

 To follow our user interface guidelines, we want to minimize the need for scrolling. However,

designing a good layout without scrolling can be very difficult, depending on how much

variability we want to support in terms of different screen sizes, font sizes and languages

(text may be much longer or shorter when translated to a different language). We therefore

need to make trade-offs. When scrolling is necessary, it is good to show the most important

information first, and make it clear that there is more information.

 A mobile device screen can be used in either horizontal (landscape) or vertical (portrait)

orientation. For phones and smaller tablets, the portrait orientation tends to be the natural

way to hold the device, except for when looking at film or photos, while a larger tablet is

seldom held this way. Either design the layouts to work well with both orientations, or design

for only one of the orientations and restrict the user interface to this orientation.

 Android devices have different Android versions and manufacturer customisations. Keep this

in mind and try to target as broad a scope as possible.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

 42

8. Lessons learned
In the following we present some of the most important lessons learned. They are classified

according to the software development phases of requirement gathering, app design and

implementation and the final phase of app testing.

Requirement analysis:

 During requirement analysis talk to the user group and to their carers. The schedules and

needs of persons with Down’s syndrome are different as the one of the general public.

 Persons with Down’s syndrome like to please. Whenever you ask them if they like something

or not, their answer will most likely be “yes”.

 If you want to ask the person with Down’s syndrome if she prefers one thing or another you

need to be prepared with hands-on mock-ups or nearly ready versions of the software. This

is due to the fact that most persons with Down’s syndrome have difficulties grasping abstract

things.

App design:

 Even wearing glasses, persons with Down’s syndrome might have very poor vision. Hence

text has to be adjustable to the text size settings of the device.

 When you design the app flow don’t assume that persons with Down’s syndrome will know

where to navigate next. Let the flow of the app do that for them. Highlight fields where the

next interaction is needed.

 Use symbols wherever you can. The symbols might be supported by additional text.

 Usually the content of an app needs to be highly personalisable. Hence, there is a lot of

configuration, preparation work load which usually the carer has to do. Please make sure it is

as easy as possible for the carer to input this data. Using a dedicated app to create the

content has proven successful.

 Do not give negative feedback to the person with Down’s syndrome. Always formulate in a

positive way. If the user has done something wrong, help him, suggest to repeat the action.

 Be aware that the frustration limit of persons with Down’s syndrome is very low. This means

that for example there should be no long loading times (when nothing happens on the

screen). If this happens they will lose focus and interest and it will be very hard for the carer

to redirect the attention of the person with Down’s syndrome to the task.

App testing:

 Pre-testing: Before testing your app with the target user group (persons with Down’s

syndrome), test software first with general population. Testing feedback can be in written

form from the test participants.

 Testing: After testing with the general population, then intensely test in a small target user

group for a short time. Observe the usage closely. Testing results are derived from the

observations and from talking to the test participants or to the carer, who can usually explain

what additional support would be needed.

 Piloting: After testing with a small user group, extend the number of participants of the

target user group as well as the testing period. It is very important to assign first tasks which

have to be completed with the help of the app.

