
SmartPlatform POSEIDON developer documentation
This document contains developer documentation for POSEIDON use of the SmartPlatform

infrastructure component. It first describes the data flow and data and account model of the

platform. It describes the API other POSEIDON components can use to connect to this service. And it

describes what data we store in SmartPlatform in the POSEIDON prototype solution. An overview of

the SmartPlatform is given in chapter 5 of deliverable D5.1.

Tellu SmartPlatform is a generic and highly configurable platform for data collection and processing.

It is used to implement sensor-based services. The core functionalities are:

 Receival of data from a heterogeneous set of sensor devices and protocols.

 The storage of this data into an internal data model.

 Processing of this data by a rule engine.

 A web application for management and data access.

 A REST API to allow access to the data by other services.

This documentation is not a complete developer manual for the Tellu SmartPlatform, but aims to

explain what is needed for developers of external applications to be able to connect to the platform.

In addition to explaining the account and data model and the main API itself, it will explain aspects of

the system that are useful as a background.

SmartPlatform data and interface overview
Figure 1 shows an overview of the platform.

Figure 1: Tellu SmartPlatform architecture overview

There are two different interfaces to the SmartPlatform for other components in the POSEIDON

solution – Device Adapters (edges) and REST API – and it is important to understand how these differ.

Roughly we can say that the first is for input of raw data in forms that are independent of

SmartPlatform, while the second gives access to SmartPlatform’s own data model, which includes

results of the input after processing. So these interfaces are at opposite ends of the system. We will

go through these aspects of the system, following the flow of data. But first a quick remark about

“devices” and “sensor” data. We use these terms because the SmartPlatform was created for

processing data from traditional sensor devices, with inputs such as position, temperature and

events registered by the devices. However, as it is a generic platform, the data input can be anything

that can be represented with numbers and text. So the “Sensor device” term should be taken in the

broadest possible sense.

The SmartPlatform can be set up with Device Adaptors (often called edges) to collect data from

sensor devices. The platform can be used with any type of data source by adding an edge that speaks

its language and translates incoming data into the platform’s internal format. In addition to receiving

data from the devices and passing it on to the core, an edge typically supports commands to the

devices, such as for configuration, so there is communication both ways. In POSEIDON we have so far

only done data collection from client applications we develop within the project, where we have

control of the communication protocol. We have a generic SmartPlatform edge where data can be

posted using HTTP POST and a JSON format. This simple protocol is easy to implement in our

components that needs to post data to the system. However, the edges give the system great

flexibility. We can easily connect small purpose-built sensor devices such as a stand-alone GPS.

Figure 2: Asset and devices

As this edge part of the system is a sensor device interface meant for data collection, it is

independent of SmartPlatform’s internal data model. The relevant concepts in the data model are

that of device, which is a source of data, and observation, which is an input to the system from a

device. Observation is still called position in some places, as initially all observations were positioned,

but in addition to some fixed fields such as timestamp and position data they can have arbitrary

fields in a key-value map. The central concept in SmartPlatform is asset, which is a tracked entity. In

POSEIDON, there is an asset representing each primary end user. An asset can have one or several

devices, and observations from these devices are then known to be about this asset. An asset may

for instance have a position, and it does not necessarily matter where the position comes from, so it

is possible to add a new device to provide position without affecting the service logic that deals with

assets and their properties.

Figure 2 shows the relationship between sensor devices and an asset. It is basically the relationship

between sources of data and the entity the data is about. The figure also indicates that assets can

belong to groups, and that an asset can be of a specific type, with the type specifying properties all

such assets have. Asset is also the main entity for POSEIDON use of the system. Using fields available

for the asset entry, such as properties and tags, we can store context, preferences and other user

data, and make it available both for the rule engine in SmartPlatform and for other modules through

the API.

Figure 3: Central SmartPlatform data model entities

Figure 3 shows the most important entities in the SmartPlatform data model, and their relationships

(references). Those not already described are mainly of interest to the platform and service itself, for

the logic which can be built using its rule engine. An alarm entity can be created by the rule engine

when some abnormality is detected. If this mechanism is used, alarm entities can be retrieved

through the API. The zone entity is for creating geofence logic in SmartPlatform, that is, trigging rules

based on entering and leaving geographical areas. This can be used to keep track of where a user is

(home/school/etc.).

The data model with entities such as assets is stored in SmartPlatform’s Storage Engine and can be

managed through its Management Console. Data from edges go through Filter and processing, where

unneeded data are discarded and the rest is connected to the data model. Every time there is a new

observation available from the initial processing, the Business Logic (rule engine) processes the

change in state, and this can cause rules to trigger, which in turn can update asset state.

The REST API gives access to the objects of SmartPlatform’s data model, both for reading and for

making changes. The asset acts as a repository of information about the user, and will hold context

such as location, user preferences, and any other types of data that needs to be shared between

POSEIDON modules. Fields can have their values updated directly from observations, from the

triggering of rules, or through the REST API. Generally, if information may need to trigger rules in

SmartPlatform’s rule engine, it should be posted as an observation through an edge, otherwise it can

be posted directly to the asset through the REST API.

The SmartPlatform also has a Subscription API, where external applications can register

subscriptions, for instance to all updates pertaining to a specific asset. The platform then maintains

an active connection to the subscribing client, rather than requiring the client to poll for data to

check for updates. The POSEIDON web application uses this to show the primary user position on a

map.

More of the entities of the data model are described in the appendix, in the context of the REST API.

Accounts and authentication
SmartPlatform has an extensive, hierarchical access control scheme, which is described in this

chapter.

API access
All access to the system through the REST API requires authentication as a user with the right

permissions. A user in the SmartPlatform context is someone (or an external system) with access to

the system, registered in the system with a user name and password (not to be confused with users

in the POSEIDON meaning, although a POSEIDON secondary user may have a SmartPlatform user).

Each API request must include an authentication token, supplied as an HTTP header, which is tied to

a user. A token can be acquired in a login transaction giving a user name and password. A token may

be time-limited or not. For the other modules in the POSEIDON system, it is possible to issue tokens

with no timeout to simplify their interaction with the service.

Account model
Figure 4 shows the main entity types relevant to this data access, where it is important to understand

the distinction between account, user and the tracked POSEIDON primary user. At the top of this

hierarchy there is a service provider, which can be the administrator of a set of accounts. A

POSEIDON service provider has been set up for the POSEIDON prototypes. All data available through

the REST API is owned by an account; this entity type is called customer internally and in APIs. Then

we have the user, which is just a data access concept as has already been discussed. A user is always

tied to a specific account, and can only access the data in this account. But an account can have many

users. A user can also have access to the higher levels of the hierarchy. It can be a service owner,

which means it can manage service providers, or it can be a service provider. A service provider user

has access to all the accounts of this service, and can change which account it is accessing through

the API.

In addition, there is a very detailed system of permissions which specify exactly which entity types,

and which operations on this data, a user has access to. These are collectively managed as roles. For

instance, an account may have one user with an administrator role, with full permissions to configure

the account, and other users with a much more restrictive role to just look at the data.

Figure 4: SmartPlatform account model

The POSEIDON primary users are represented as asset entities in the data model, as has already been

mentioned. So such a tracked person is “just data” in this context, one of the data objects belonging

to an account, and there can be any number of these stored in an account. It is possible to restrict a

user’s access to specific assets in an account. All this means it is possible to use a single account for

several sets of secondary users each having access only to a specific primary user.

When using the SmartPlatform as part of the infrastructure providing a service to primary, secondary

and tertiary users, an account and role policy must be specified. A service provider responsible for

this part of the service may set up a separate account for each primary/secondary user pair, or put all

users in a single account. If correctly set up with permissions, the end users will not see any

difference. The single account model has some important advantages. It makes it easy to give access

to the data of a set of primary users, for instance to tertiary users. It also makes it possible to design

service logic for the rule engine which considers multiple users, as all rules are account-specific.

There is also more work to manage multiple accounts, as entities such as asset type and properties

are also all account-specific and must then be duplicated between accounts. For the POSEIDON

prototypes, we use a single account for all pilot users.

Device ID
The account and authentication scheme described so far does not concern the Device Adapter part

of the system. Each data source (sensor device) has a unique ID in SmartPlatform, and this is what

identifies observations as belonging to a specific device entity, which in turn belongs to an asset. A

client application instance which will post data through an edge needs to be registered in the

SmartPlatform instance, and it needs to know its ID so its posted data will be handled by the system.

There are two ways to handle this. One way is to use the device command system supported by

edges, where a configuration command is delivered to the device or application instance through the

protocol implemented by the edge. The other is to use the REST API, knowing the name of the asset

representing the end user, we can retrieve the device IDs for any devices registered for this user.

REST API
The SmartPlatform API is a standard HTTP REST API, supporting GET, POST, PUT and DELETE

operations. Data is exchanged in JSON1 format. This chapter gives a technical description of the

format of API requests and replies. The relevant resources (data objects) are described in the

appendix.

Note that the documentation for the API is available online at the following URL:

1 http://www.json.org/

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Refer to this for the latest version, and for examples of the JSON data objects.

URL
The URL consists of four parts: base (server address), customer, resource and ID.

<base url>/<customer id>/<resource>/<resource id>

Retrieving only the root of the URL (without resource) will give an object describing what resources

are available.https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Property Description

providers A list of service providers the user making the request can access.

customers A list of customers the user making the request can access.

access A list of available resources with a map per resource indicating what
methods that is available and whether the client is allowed to perform
them.

features A list of suggestions to the client to enable or disable features in order to
provide a simpler interface to the user.

user An object containing the id of the user making the request.

provider An object containing the id of the service provider of the customer in the
request.

customer An object containing the id of the customer in the request (or if the
customer id was not included in the URL, the customer associated with
the user).

time The time the request was handled.

Retrieving data
All data requests must be done with the HTTP method GET. All requests done on resources will have

the same properties in the response.

Property Description

result A list of resources matching the data request. This will always be a list, even
if the client requests a resource with a specific id.

total The total number of resources matching the data request.

offset Marker to use to paginate the data.

max The maximum number of resources in each response.

user An object containing the id of the user making the request.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

provider An object containing the id of the service provider of the customer in the
request.

customer The customer used as source of data in the request.

time The time the request was handled.

Filtering data requests
The SmartPlatform has a powerful filtering mechanism. Filters are added as parameters in the URL.

Multiple filters can be added, but a mechanism can only be used once per property (latitude:less=59

and latitude:greater=58 is possible, but name:contains=e and name:contains=m is not). All filters

follow the same pattern.

<property name>:<filtering mechanism>=<filter value>

Filtering mechanisms Description

equals Usable on most data types.

contains Usable on string data types and some more complex types.

less Usable on number and date data types.

greater Usable on number and date data types.

Example Limit request to resources with ...

name:equals=Demo name equal to Demo.

name:contains=em Name containing the text “em”.

latitude:less=59 latitude less than 59.

longitude:greater=11 longitude greater than 11.

timestamp:greater=2013-04-18T00:00:00.0 timestamp after April 18. 2013.

timestamp:less=2013-04-20T00:00:00.0 timestamp before April 20. 2013.

Data content
When requesting data, not all data is included due to performance and bandwidth reasons. When

querying a list of data, only id and name is included by default. When querying a single resource, all

immediate properties are included (without any recursion). Complex objects will (usually) include an

id and name. This behaviour can be overridden by adding a parameter to the URL named select.

Select accepts a list of property names separated by the character “+”. It also has two special values,

star “*” and at “@”. The symbol “*” includes all properties and all subproperties. The symbol “@”

includes all properties but only the minimum of subproperties (id and name).

Example

select=* All properties of the resource, and all subproperties

select=@ All properties of the resource, but minimum of data
for subproperties

select=lastValidPosition+type Only lastValidPosition and type properties. Type (a
complex type) will only have id and name.

select=lastValidPosition+type.icon Only lastValidPosition and type properties. Type will
now also have icon as well as id and name.

select=type.* Only type. All properties of type will be included.

select=positionProvider.@ Only positionProvider. The immediate properties of
positionProvider is included.

Submitting data
Adding a resource must be done with HTTP method POST, without a resource ID in the object or in

the URL. Resource objects are wrapped in a list to allow creating more than one object in the same

request.

POST <base>/<customer id>/<resource>

Updating an object must be done with HTTP method PUT, with a resource ID in the URL. In both

cases the resource must a JSON object inside a JSON list in the request payload. See each resource

section for more information about which properties that are required and valid values. The resource

object is wrapped in a list to be consistent with creating an object. If a property is omitted then it will

not be changed on the server.

PUT <base>/<customer id>/<resource>/<resource id>

Deleting data
Deleting data must be done with HTTP method DELETE with a resource ID in the URL. The response if

successful is an empty GET response (with HTTP code 200).

DELETE <base>/<customer id>/<resource>/<resource id>

Tracking and logging history
This section describes the control of storage of tracked data history in the SmartPlatform service, and

how the data can be accessed. This is done through the management console, by a developer,

researcher or other personnel with an administrator account in the system.

The Devices category in the SmartPlatform account shows the last observation that has been made.

Accumulated Observation Values returns the latest value for various properties. In the Device view,

the Debugging Tools button shows a list of the latest observations, the list can be expanded when

blue ‘i’ icon is clicked.

When the Personnel item in the Content menu is clicked, the asset properties (with current values) as

well as the last observation from the associated device is shown. There is also a button for the

History function. When tracking of the person is enabled, all asset property changes are stored, and

will be available in this history view, as a table, graph or on a map, depending on the type of data.

Figure 5: Device view in management console

Data is loaded for a specific timeframe. Tracking, in the sense of storing historical data, can be on or

not, and how long the data is stored is configurable. It is not needed to simply keep track of where a

person is at the current time. It is needed if a history of movement may be wanted. It also allows

using the SmartPlatform service to log events from client applications. In the POSEIDON pilots the

mobile application logged end user events to the SmartPlatform server, so that researchers could

analyse the logs after the pilots, seeing how much various functions were used. Therefore tracking of

history was enabled.

Figure 6: Asset view in management console

Tracking history storage can be affected by one of the following settings:

 The service provider level specifies default and maximum history lengths for accounts

belonging to this provider. In the POSEIDON prototype this length is 90 days.

 Any account can set a history length within the service provider limit mentioned before.

Thus, we sat the history length to 90 days in the pilot account (POSEIDON Pilot).

 History is only stored when Tracked property of the individual asset (tracked person) is

enabled. However, tracking can be toggled through the management console, through a rule

or through the REST API. Tracking option can also be set to Never or Always.

All of the above are related to storage of data on the server, and should not be confused with the

tracking setting in the user preferences in the POSEIDON prototype mobile application. When this is

turned off, device tracking isn’t sent to the server in the first place.

POSEIDON asset type and properties
The asset representing the POSEIDON primary user in the SmartPlatform service needs to be of an

asset type defining a set of properties. These properties makes up a user profile. This is a place for

applications to store shared preferences, such as for personalisation. An asset property is also

needed for observation data to be stored in asset history.

The POSEIDON asset type is called “Primary user”. Figure 7 shows the properties defined at the time of

the second pilot, in the management console. Some of these are used by specific applications to

store their own preferences, and so not part of the framework.

Figure 7: Asset properties in POSEIDON pilots

Those properties which have an interest outside of a specific application are described in the table

below. The framework allows extending the type with more properties as needed.

Property name Description

destinations A set of destinations the primary user may want navigation assistance
traveling to. Used by the mobile application to create a new route to a
wanted destination. It is stored as a JSON list, where each element has the
properties name, lat and lon (the two last are the coordinates).

language Language preference, currently used by the web application.

phone The phone number of the carer to contact if the primary user needs
assistance.

theme The visual theme for the primary user. Currently supported are “pos” and
“posHC”, for the default POSEIDON theme and a high-contrast alternative.

webTheme Visual theme for the secondary user (used by the web).

Feedback For logging from the mobile application – feedback on the use of app
functionality.

Again For logging from the mobile application – whether the user would like to
use the functionality again.

AppLog For logging from the mobile application – application event.

AppView For logging from the mobile application – a view is shown in the app.

Appendix 1: SmartPlatform API resources
We include here a documentation of the most important resources (data objects) of the data model

and REST API of Tellu SmartPlatform. The resource sections are ordered alphabetically, and list all

fields available through the API. The complete REST API documentation is available online, and

should be consulted for application development, as it gives a complete and up-to-date listing. It is

available at the following URL:

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Alarm
An alarm is a notification that requires the attention of a user, usually generated by the reasoning

engine based on some rule.

Property Type Optional More info Filtering

name string - -

owner customer - -

dateCreated date - equals,
greater, less

lastUpdated date -

comment string - equals,
contains

ackNeeded boolean - equals

logLevel integer - Degree of severity of alarm. 0 is most
severe, -20 least. -20 should be without
immediate notification.

equals,
greater, less

asset asset - Asset associated with the alarm. equals (id
of asset)

ackedBy user -

rule rule -

alarmCenter customer -

trigger position - The observation triggering the
rule/alarm, if available.

position position - The position of the related asset when
the alarm was created.

zone zone - Zone relevant to the triggering of this
alarm.

-

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/rule
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone

Asset
An asset represents a person tracked by the system (the primary user). The properties and tags fields

are the most important to the other modules in POSEIDON, as these are where the user data and

state is stored.

Property Type Optional More info Filtering

name string NO equals,
contains

description string YES equals,
contains

owner customer - -

lastValidPosition position - The most recent observation with
a valid position received by the
position provider of the asset.

-

lastPosition position - The most recent observation
received by the position provider
of the asset. If the position is
valid this will be the same as
lastValidPosition.

-

tags list of
objects

YES When creating or updating only
the name of the tag will be used,
the time will be set by the server.

contains

groups list ofgroup YES When creating or updating only
the id of the group will be used.

-

insideZones list ofzone - contains (id of
zone)

icon string - This icon is the icon set by the
asset's type.

-

image string - -

type type YES When creating or updating only
the id of the type will be used.

equals (id of
type)

tracked boolean YES If enabled all observations
received by the position provider
will be stored. Cannot be set to
true if the trackMode is "never",
cannot be set to false if the
trackMode is "always".

-

trackMode string YES "always" will always store
observations received. Rules

-

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/group
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/type

Property Type Optional More info Filtering

cannot change whether or not
the asset is tracked.
"never" will never store
observations received
permanently. Rules cannot
change whether or not the asset
is tracked.
"manual" depend on the tracked
property to determine if
observations are stored. Rules
can change whether or not the
asset is tracked.

properties list of
objects

YES The possible property names are
based on the configured
properties in the asset's type.

contains

alarms list ofalarm - The five most recent,
unacknowledged alarms. Useful
for creating lightweight clients.

-

deviceCommand
s

list of
objects

- TODO -

positionProvider tag ordevice YES When creating or updating only
the id of the object will be used.
The server will first attempt to
find a device matching the id and
if not found a tag.

equals (id of
positionProvid
er)

Device
A device specifies a source of sensor data, and is assigned to an asset to provide sensor data for that

asset. In POSEIDON the app running on the user’s tablet will be one such “device”, and any other

client sub-system posting data through an edge will also have a device entry.

Property Type Optional More info Filtering

name string NO

description string YES

owner customer -

lastValidPosition position -

lastPosition position -

sensorDeviceType string NO

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/alarm
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/tag
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/device

Property Type Optional More info Filtering

active boolean -

uuid string -

primaryProperties object NO

commandProperties object -

additionalProperties object YES

filters list of
filter

YES

Group
Assets can belong to groups, which may be useful for group logic (trigger rules for all assets in a

group).

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the
same as any existing group inside the
customer.

equals,
contains

description string YES equals,
contains

owner customer -

assets list
of assets

YES

Position
Although called position, this is more generally a sensor observation. The properties field can contain

whatever key-value pairs the source wants to post.

Property Type Optional More info Filtering

asset asset - equals

valid boolean - equals

latitude double - equals,
greater, less

longitude double - equals,
greater, less

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset

Property Type Optional More info Filtering

accuracy integer - Estimated accuracy in meters equals,
greater, less

speed integer - Speed as reported by device in meter
per second.

equals,
greater, less

address string -

timestamp date equals,
greater, less

properties object -

events list of
string

 -

insideZones list
ofzone

- A list of zones the position was inside
when it was received by the system.

contains (id
of zone)

Rule
A rule is a configurable unit of logic for the reasoning engine. The active set of rules defines the

service behaviour. The data available through the API is mainly for viewing and changing rule states

(turn on and off).

Property Type Optional More info Filtering

name string - equals,
contains

description string - equals,
contains

owner customer - -

status string YES Values: "active", "inactive", "unknown",
"stopped", "failed",
"requiresConfiguration". When changing
the status, only "active" or "inactive" are
valid inputs.

-

Type
Assets can be typed, with the type specifying what properties an asset has. POSEIDON assets will

have their own type, specifying the fields needed for our system.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/zone

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the same
as any existing type inside the customer.

equals,
contains

description string YES Any string.

owner customer -

icon string YES URL referring to an icon describing assets
of this type.

properties object YES Object where each key is a different
property name. Property value is an object
with at least two entries, type and
valueType. If the type is a list it must also
include a list of string called items.

Zone
Zones are used to define location-specific logic such as geofence (trigger a rule on entering or leaving

an area).

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the
same as any existing zone inside the
customer.

equals,
contains

description string YES equals,
contains

owner customer -

position latlon - An object with two entries, latitude and
longitude.

singleLevel boolean YES When checking if an asset is inside, do
they need to be on the same floor.

floor integer YES

textual string YES

address string YES

points list of
latlon

NO List of objects with two entries, latitude
and longitude. Must have at least 3
objects.

Property Type Optional More info Filtering

assets list
ofassets

- A list of assets that have received an
observation with a valid position after
this zone was created.

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset

